Team:Valencia Biocampus/Yeast

From 2012.igem.org

Revision as of 09:30, 22 September 2012 by Lujemomo (Talk | contribs)




Yeast Subteam


THE IDEA




Our aim in this part of the project is to detect when the yeast starts fermenting. At the end of the project we will be able to “ask” the yeast if there is still any glucose in the medium or not through the addition of H2O2. Furthermore, we will be able to know for how long the media has been running out of glucose. In conclusion, this project allows us to know how much time has elapsed since the fermentation began.

To do this, we are going to use two gene constructions:

The ADH2 promoter fused to the YAP1 protein coding sequence. The protein YAP1 is a yeast transcription factor regulator of H2O2 adaptative response. It is stored in the citoplasm in normal conditions and, in the presence of H2O2, it is transported to the nucleus acting as a transcription factor. The ADH2 promoter is activated in the absence of glucose.

Thus, complete disappearence of glucose triggers the production of YAP1 in the citoplasm, and YAP1 concentration increases if the lack of glucose continues. Note that we are working with a delta-yap1 mutant.

The TRR promoter is fused to the GFP (Green Fluorescence Protein) coding sequence. The green fluorescent protein can be detected by fluorescent emission. The tiorredoxin reductase promoter is activated by two transcriptional factors (YAP1 and SKN7 in the oxidative form). Both only bind to the promoter if H2O2 has been previously added to culture medium.

MOLECULAR MECHANISMS


Click on each plasmid to learn how our constructions work!


OUTLINE

- We ordered the DNA constructions: pADH2-YAP1 protein and pTRR-GFP protein that were cloned in plasmid pUC57 with a bacterial origin of replication.
- We were supplied the Yeplac181 and Yep352 yeast vectors by our laboratory.
- We carried out four transformations of E. coli strain DH5, one for each plasmid DNA (the two constructions and the two vectors), in order to amplify them. See the Transformation Protocol Using Heat Shock .
- We obtained several transformants of E. coli in four plates and took some colonies of each DNA (from both constructions and both vectors) and cultured them in liquid medium over night at 37ºC in shaking flasks.
- A day after, we extracted the plasmid DNA. See the Mini-preps protocol. See the Mini-prep Protocol.
- We obtained the purified constructions (both in pUC57 plasmid) and the vectors for yeast (YEplac181 and YEp352) also purified.
- We digested the four DNAs with restriction enzymes EcoRI and PstI in order to obtain compatible ends. See the digestion protocol.
- We ligated the pTRR-GFP construction with the Yep352 vector and the ADH2-YAP1 construction with the Yeplac181 vector. See the ligation Protocol.
- The day after that we transformed E. coli with the results of the ligation in order to amplify the final constructions (pTRR-GFP/Yep352 and pADH2-YAP1/YEplac181). We located the recombinant constructs using X-Gal and white/blue selection.
- We took some of these white colonies and cultured them in liquid medium overnight at 37ºC in shaking flasks.
- The day after we extracted the plasmid DNA. See the Mini-prep Protocol.
- After this, we checked the final purified recombinant constructs by electrophoresis, restriction digest and DNA capilar sequencing.
- We introduced the first of the DNA recombinant plasmids in the yeast. See the Yeast transformation protocol.
- We selected the transformants by growth in solid and liquid mineral medium attending to the auxotrophic markers and checked the presence of the construction by PCR. See the protocol here.
- We used the transformed yeast obtained at that moment and transformed it with the second recombinant construct. See the yeast transformation protocol. See the Yeast transformation protocol.
- Once again we identified the transformants by growth in selective medium and after that we used a PCR protocol to check the presence of both constructions.