Team:NYMU-Taipei/ymis1.html
From 2012.igem.org
(Difference between revisions)
Line 119: | Line 119: | ||
<li><a title="Discussion" href="https://2012.igem.org/Team:NYMU-Taipei/ymis6.html">Discussion</a></li> | <li><a title="Discussion" href="https://2012.igem.org/Team:NYMU-Taipei/ymis6.html">Discussion</a></li> | ||
<li><a title="Conclusion & References" href="https://2012.igem.org/Team:NYMU-Taipei/ymis7.html">Conclusion & References</a></li> | <li><a title="Conclusion & References" href="https://2012.igem.org/Team:NYMU-Taipei/ymis7.html">Conclusion & References</a></li> | ||
- | + | ||
</ul> | </ul> | ||
</li> | </li> | ||
Line 129: | Line 129: | ||
<li><a title="Methods" href="https://2012.igem.org/Team:NYMU-Taipei/ymiq2.html">Methods</a></li> | <li><a title="Methods" href="https://2012.igem.org/Team:NYMU-Taipei/ymiq2.html">Methods</a></li> | ||
<li><a title="Experiments" href="https://2012.igem.org/Team:NYMU-Taipei/ymiq3.html">Experiments</a></li> | <li><a title="Experiments" href="https://2012.igem.org/Team:NYMU-Taipei/ymiq3.html">Experiments</a></li> | ||
- | <li><a title="Results & References" href="https://2012.igem.org/Team:NYMU-Taipei/ymiq4.html">Results & References</a></li> | + | <li><a title="Results & References" href="https://2012.igem.org/Team:NYMU-Taipei/ymiq4.html">Results & References</a></li><li><a title="Further Experiments after Asia Jamboree" href="https://2012.igem.org/Team:NYMU-Taipei/ymiq5.html">Further Experiments after Asia Jamboree</a></li> |
</ul> | </ul> | ||
</li> | </li> |
Latest revision as of 01:45, 27 October 2012
Overview
Sulfur Oxides (SOX, SO2) is the main precursors of air pollution which is a deteriorating problem nowadays. Producing acid rain and acidified soils, Sulfur Oxides not only result in breathing problems such as asthma, pneumonia, but destroy farm crops, buildings and environment, causing millions in lost each year.
In order to achieve bioremediation, we choose cyanobacteria as our target organ. However, there is no rose without thorn. Due to lost sulfur metabolism functions, We use synthetic biology and gene cloning technique to complete sulfur metabolism pathway inside cyanobacteria.
Sulfur metabolism pathway in KEGG shows that cyanobacteria don’t have ability to reduce sulfur dioxide. So, we engineer bacteria with sulfide reductase.
-
Sulfur Oxide Terminator
-
Sulfide as Energy Generator
-
Denitrifying Machine
-
Cd+2 Collector
-
Becoming Venusian