Team:Grenoble/Safety/Assesment

From 2012.igem.org

(Difference between revisions)
m
Line 221: Line 221:
<div class="encadre" id="red">
<div class="encadre" id="red">
</div>
</div>
 +
 +
<iframe src="http://www.youtube.com/embed/J0JJA2pSR74" ></iframe>
 +
</section>
</section>
</div>
</div>

Revision as of 16:18, 28 August 2012

iGEM Grenoble 2012

Project
Legend :
Get deeper into safety

Information you have to read

Explanation of methods

RISK ASSESSMENT

In this part we explain the method and results of the risk prevention made during the project.

Explanation



Before explaining what was done, here are defined some terms.

A risk



It is a possibility that a dangerous phenomenon can cause damage to a given target.


A risk assessment



A risk assessment tries to define all risks in presence , evaluates the probability and the gravity of each one.


Safety and Security



A difference should be made between Safety and Security. Safety intends to reduce risks in terms of accidents, incidents, damage due to them and consequences of these activities on health. On the other hand, Security deals with the misuse of devices and voluntary acts which creates risks for others. We only worked on the safety during the project.

The context



We worked in the CIME-Nanotech. The laboratory belongs to the INPG safety department which took care of the team during the project. This department has the following structure:


ACMO: “Agent Chargé de la Mise en Oeuvre des règles d’hygiène et de sécurité “(Officer Responsible for Implementation of hygiene and safety)

We contacted the safety officer and explained to her what we indented to do. At first sight she was a bit frightened by the work, and she wanted to know exactly how we managed to reduce risks. Therefore one student of the group dealt with the safety assessment.



To prevent any problems with the team, each member signed a regulation that compelled us to respect some rules:
  • Work between 7 A.M. and 7 P.M. because of safety problems
  • Use and do not lend the personal badge which permits to enter in the laboratory
  • Do not work alone in the laboratory
  • Do not eat nor drink in the laboratory
  • Do not smoke in the laboratory
  • Use good laboratory practices
  • All products must be tagged and a stock status has to be regularly updated


To reach those obligations we have done a safety inspection with the help of the Safety department. The goal was to inform people about risks in presence and rules to respect. Moreover we wrote a safety manual of good laboratory practices available here.

what has been done



In the context of iGEM we have:
  • Spotted the main risks
  • Reduced the chemical risk
  • Checked if the UV risk was under control
  • Improved the safety in biology

Spotting main risks



In order to improve the safety of our project and to be efficient, we focused first on spotting the main risks due to laboratory manipulations.

To this end, we made an inventory of all devices and manipulations which would be used and done.



Chemical risk




Explosion risk




Mechanical risk



Risk due to devices under pressure



Risk related to ionizing radiation




Biological risk





We made a parallel between our risk assessment and the one made by the safety department of the CIME.


How to read a risk assessment grid?



Here you have an instance. What we were looking at, is the grade given to each risk. The higher it is the more predominant is the risk.


This study led us to three main risks:
  • The chemical risk
  • The risk related to ionizing radiation (UV)
  • And the biological risk

Reduction of the chemical risk



It appears that it is essentially the revelation of the DNA with the ethidium bromide (EtBr) which is dangerous. Indeed, EtBr is a mutagen product of level 2, meaning that its mutagenicity effect was confirmed on animals at low concentration (no exposure limit value is given by the manufacturer). We must therefore follow the precautionary principle, especially because it is stored in its purest form.

Regarding contamination, direct contact with skin is the only way to be exposed. Indeed, the saturation vapor pressure of ethidium bromide is relatively low. In theory no exposure occurs.


How are chemical products classified





In the laboratory the risk is taken very seriously. An area is exclusively devoted for its use. Moreover nitrile gloves are available as well as full face protections. Finally a specific dustbin is in place for disposal. (For more details see the safety manual practice).


To find information, we sought the EtBr MSDS. We first wanted to know where EtBr was, to check if there is any risk of being in contact with the product. To detect its presence we used an UltraViolet (UV) lamp. Red circled areas were positively controlled.



To prevent the use of EtBr, we tried to find substitutes. We found the NANCY-520 and the SYBER-SAFE. However the NANCY 520 could not be used because we did not have the appropriate wavelength on our lamp. As far as the SYBER-SAFE® is concerned, it appears to be safer, but the revelation takes too much time. It did not meet our needs. Therefore we did not change the product.


Then we used regulation and we managed to improve the workstation via three ways:
  • Work organization
  • Technic
  • Training


Our work led us to put in place these things:



Moreover a protocol was set up. (le film est à venir)