Team:Calgary/Project/OSCAR/Bioreactor
From 2012.igem.org
Line 17: | Line 17: | ||
<h2>Our Bioreactor Evolution</h2> | <h2>Our Bioreactor Evolution</h2> | ||
- | <p>Throughout the summer we worked on creating a prototype of the bioreactor. The process that was deemed most suitable, was a fed-batch system, where the reactors would be continually fed with more bacterial nutrients and fresh tailings in a continuous stir method. Product is removed at the same rate that biomass and nutrients are added | + | <p>Throughout the summer we worked on creating a prototype of the bioreactor. The process that was deemed most suitable, was a fed-batch closed system, where the reactors would be continually fed with more bacterial nutrients and fresh tailings in a continuous stir method, which are favored for an industrial scale of (1000+ L tanks). Product is removed at the same rate that biomass and nutrients are added, and tailings are pre-filtered to prevent environmental strains from joining the mix. Additionally, the process would have to occur within an enclosed system to ensure its containment.</p> |
+ | <p>Lastly, we needed to pick the best possible process to remove the hydrocarbons from the culture. We decided to use a belt skimmer, similar to those used to help clean up oil spills. This method allows us to run the belt to pick up hydrocarbons without having to remove the entire solution of the batch. This way the bacterial culture already present in the tank can be maintained in active culture to continuously produce more hydrocarbons. | ||
- | + | To ensure that the belt does not transfer live bacteria into the hydrocarbon tank, will have a UV light aimed at the most apical point in the belt path to ensure that any bacteria picked up by the skimmer receive a lethal dose of light before the hydrocarbons are skimmed from the bioreactor chamber. | |
- | + | ||
- | To ensure that the belt does not transfer live bacteria into the hydrocarbon tank, will have a UV light | + | |
</html>[[File:UCalgary2012_BioreactorOverview.jpg|thumb|745px|left|'''Figure 2:''' From computer to prototype, how we made our bioreactor. a) Our system began with a model built using Google Sketch Up. It had two chambers and a tube acting as a siphon to pull off hydrocarbons. b/c) The first prototype took its shape from the materials we were able to find in the lab (including the recycling bin). This system was meant to show that the bioreactor could agitate a solution with the turbine. d) This prototype is our first manufactured design we put together. It needs a power source to turn on the computer fan motor which runs the turbine. It also includes an air sparger system to allow our system to be oxygenated. Apart from the plastic gears, it is fully autoclavable. e/f) Our final prototype, which includes the belt skimmer in an enclosed system. It is able to skim off the top oil layer in a solution of water and canola oil into a small falcon tube.]]<html> | </html>[[File:UCalgary2012_BioreactorOverview.jpg|thumb|745px|left|'''Figure 2:''' From computer to prototype, how we made our bioreactor. a) Our system began with a model built using Google Sketch Up. It had two chambers and a tube acting as a siphon to pull off hydrocarbons. b/c) The first prototype took its shape from the materials we were able to find in the lab (including the recycling bin). This system was meant to show that the bioreactor could agitate a solution with the turbine. d) This prototype is our first manufactured design we put together. It needs a power source to turn on the computer fan motor which runs the turbine. It also includes an air sparger system to allow our system to be oxygenated. Apart from the plastic gears, it is fully autoclavable. e/f) Our final prototype, which includes the belt skimmer in an enclosed system. It is able to skim off the top oil layer in a solution of water and canola oil into a small falcon tube.]]<html> |
Revision as of 00:31, 4 October 2012
[http://www.example.com link title]
Hello! iGEM Calgary's wiki functions best with Javascript enabled, especially for mobile devices. We recommend that you enable Javascript on your device for the best wiki-viewing experience. Thanks!
Bioreactor: The House of OSCAR
Introduction
We want to use the genetically engineered bacteria of the OSCAR project to convert toxic organic compounds into recoverable hydrocarbons. To accomplish this goal our team has designed a contained bioreactor system at the scale to operate in the locations of oil sands tailings ponds and oil refineries. We used what is known of similar sized bioreactors and hydrocarbon recovery techniques to decide what factors to consider in the design of OSCAR's home: culture conditions, method for hydrocarbon extraction, and containment of the genetically modified organisms.
Research
Before diving into a making bioreactor, we first had to research current solutions in the field. To help us with this phase, we researched papers on bioreactors that exist with such diverse applications as wastewater treatment, tissue engineering and beer fermentation. To observe a large scale bioreactor, we toured a wastewater treatment plant (we would have preferred a brewery) where we interviewed plant managers and learned conditions that need to considered in big systems: open or closed system (theirs was open), methods for oxygenation and preventing contents from settling. We also interviewed graduate students and professors researching bioreactors at the University of Calgary for their insight as well as meeting weekly with the supervisors and biologists on our team. Below are pictures from our trip to the wastewater plant!
Our Bioreactor Evolution
Throughout the summer we worked on creating a prototype of the bioreactor. The process that was deemed most suitable, was a fed-batch closed system, where the reactors would be continually fed with more bacterial nutrients and fresh tailings in a continuous stir method, which are favored for an industrial scale of (1000+ L tanks). Product is removed at the same rate that biomass and nutrients are added, and tailings are pre-filtered to prevent environmental strains from joining the mix. Additionally, the process would have to occur within an enclosed system to ensure its containment.
Lastly, we needed to pick the best possible process to remove the hydrocarbons from the culture. We decided to use a belt skimmer, similar to those used to help clean up oil spills. This method allows us to run the belt to pick up hydrocarbons without having to remove the entire solution of the batch. This way the bacterial culture already present in the tank can be maintained in active culture to continuously produce more hydrocarbons. To ensure that the belt does not transfer live bacteria into the hydrocarbon tank, will have a UV light aimed at the most apical point in the belt path to ensure that any bacteria picked up by the skimmer receive a lethal dose of light before the hydrocarbons are skimmed from the bioreactor chamber.
The Prototype
We determined a the essential concepts that needed to be developed in the prototype. We need to make our bioreactor a closed system in order to prevent it from becoming contaminated. We needed to used a batch system for the lab scale (for competition data) of optimizing appropriate growth media. This opposes
Finally to ensure optimal bacterial growth and production of our desired product, we included both a sparger and a turbine in the bioreactor design. The purpose of the turbine was to mix the solution preventing bacterial cells and other heavier materials from settling at the bottom of the vessel. Continuous mixing of the solution would also ensure even nutrient and reactant distribution in the tank. The sparger oxygenated the solution, aeration which is necessary for our aerobic bacteria to thrive. When assembled together the turbine would be located above the sparger thus breaking each bubble from the sparger into smaller ones. In a thicker solution such as tailings, both the air sparger and turbine will agitate the solution thus mixing it and prevent heavier materials from settling at the bottom of the chamber.
Once we had these designs in place, we were able to start building models and presentation material. One of our goals was to have a computer animation of our design in motion. We were able to meet this goal by using programs called Maya and RealFlow. Maya is a complex and extremely versatile computer animation program used for many animated movies, including James Cameron’s “Avatar”. RealFlow is a particle-generating program, used primarily for creating fluid flow and fluid effects. Combining both of these programs, we created a seventeen second long video showing the basic idea of how our bioreactor will work. In addition to this, we made a functioning model of a tank with our turbine, belt skimmer, and sparger included inside. Our model is also a closed system, which will be brought to the competition to demonstrate to the judges.
Particle Simulation Using RealFlow2012
Open System Showing Separation of Hydrocarbon Layer
Closed System Showing Emulsified Hydrocarbons
Testing and Results
Using the physical models that we made, we were able to conduct experiments to help determine what will make our design most efficient. We received five different belt samples from a belt skimming company (Abanaki), so we conducted three different tests to determine which belt would work best for us. Our tests sought to find the belt that picked up the most oil, least tailing pond material, and least amount of bacteria.
Additionally, we ran three different twenty-four hour bacterial growth tests in our tank to determine the effectiveness of the agitator and sparger on bacterial growth. The test was conducted with a turbine and a sparger, only a turbine, and only a sparger. At the end of each experiment we measured the optical density of the solution with a spectrophotometer to quantify the bacterial growth. Operating our bioreactor with both a turbine and sparger resulted in slightly greater bacterial growth than just the turbine, which coincides with our hypothesis. The results are displayed below:
Also, we mixed water, commercial NA’s, and hexadecane (model hydrocarbon) together in a small test tube to determine if we will indeed get a top layer of hydrocarbons like what we need. Indeed, this top layer of hydrocarbons was formed after two minutes of time to allow for separation.
The Final System
Next Steps
The next steps would include developing a feedback and sensing method to monitor the temperature, Ph, and C02 in a highly toxic and corrosive environment. Once the genetically engineered bacterium is produced we can start modeling the bacterial life cycle. Since our bacteria will only produce hydrocarbons within its stationary phase, we would like to look into increasing this portion of the lifecycle and possibly into adding bacteria to the bioreactor when it is in its exponential phase rather than the lag phase. This should reduce the time needed for each reactor cycle. Also, another important aspect we can test after the bacteria are made is the rate of hydrocarbon production by the bacteria.