Team:Calgary/Project/OSCAR/Bioreactor
From 2012.igem.org
Colinbrown (Talk | contribs) |
Colinbrown (Talk | contribs) |
||
Line 11: | Line 11: | ||
<p>In addition to looking into a bioreactor design, we were also tasked with finding a way of extracting the produced hydrocarbons from the bioreactor. Theoretically, the hydrocarbons being less dense and hydrophobic should settle in the top layer of the solution. Separation of a certain layer into various components can be done in many ways such as using a centrifuge or even various filters.</p> | <p>In addition to looking into a bioreactor design, we were also tasked with finding a way of extracting the produced hydrocarbons from the bioreactor. Theoretically, the hydrocarbons being less dense and hydrophobic should settle in the top layer of the solution. Separation of a certain layer into various components can be done in many ways such as using a centrifuge or even various filters.</p> | ||
<p>A bioreactor utilizing genetically engineered bacteria could have serious environmental implications if somehow the bacteria were to escape. Introducing something not meant to be in the environment has the possibility of having detrimental and irreversible effects. Thus, safety was a huge consideration throughout our project.</p> | <p>A bioreactor utilizing genetically engineered bacteria could have serious environmental implications if somehow the bacteria were to escape. Introducing something not meant to be in the environment has the possibility of having detrimental and irreversible effects. Thus, safety was a huge consideration throughout our project.</p> | ||
- | < | + | |
- | </ | + | <h2>Research</h2> |
+ | <p>Before diving into a making bioreactor, we first had to research current solutions in the field. To help us with this phase, we read research papers on bioreactors, toured a wastewater treatment plan, interviewed PHD students in the field, and had weekly meetings with the supervisors and biologists on the team. The bioreactors at the wastewater treatment plant were contained in open systems since they used natural microbes. The reactor also contained an air sparger to oxygenate the solution and spun at an extraordinarily slow rate. This was one of the many bioreactor processes we looked into. Below are pictures from our trip!</p> | ||
+ | |||
</html>}}} | </html>}}} | ||
}} | }} |
Revision as of 02:42, 25 September 2012
Hello! iGEM Calgary's wiki functions best with Javascript enabled, especially for mobile devices. We recommend that you enable Javascript on your device for the best wiki-viewing experience. Thanks!
Designing a Physical Bioreactor
Introduction
One of the main goals our team set out to accomplish was to convert naphthenic acids into useable hydrocarbons for fuel. It is clear that genetically engineered bacteria are needed to perform such a complex task, however, a system is needed to carry out this biochemical process. Bioreactors are engineered vessels designed to accomplish such a task.
Bioreactors are used in many different applications where a biochemical process is needed, such as wastewater treatment, tissue engineering, or even beer fermentation. All of these systems, including ours, need proper heat and oxygen exchange as well as suitable pH and agitation control. With the addition of ideal flow rates, growth medium, and bacterial growth rates, we were left with many design considerations to go into our bioreactor.
In addition to looking into a bioreactor design, we were also tasked with finding a way of extracting the produced hydrocarbons from the bioreactor. Theoretically, the hydrocarbons being less dense and hydrophobic should settle in the top layer of the solution. Separation of a certain layer into various components can be done in many ways such as using a centrifuge or even various filters.
A bioreactor utilizing genetically engineered bacteria could have serious environmental implications if somehow the bacteria were to escape. Introducing something not meant to be in the environment has the possibility of having detrimental and irreversible effects. Thus, safety was a huge consideration throughout our project.
Research
Before diving into a making bioreactor, we first had to research current solutions in the field. To help us with this phase, we read research papers on bioreactors, toured a wastewater treatment plan, interviewed PHD students in the field, and had weekly meetings with the supervisors and biologists on the team. The bioreactors at the wastewater treatment plant were contained in open systems since they used natural microbes. The reactor also contained an air sparger to oxygenate the solution and spun at an extraordinarily slow rate. This was one of the many bioreactor processes we looked into. Below are pictures from our trip!