Team:Grenoble/Biology/Network

From 2012.igem.org

(Difference between revisions)
Line 52: Line 52:
<center><img src="https://static.igem.org/mediawiki/2012/c/c7/AND.png"/></center>
<center><img src="https://static.igem.org/mediawiki/2012/c/c7/AND.png"/></center>
<br/>
<br/>
-
cAMP binds to CRP (C-reactive protein) and then this complex allows the production of AraC by activating the pMalT promoter.<br/>
+
cAMP binds to CRP (C-reactive protein) and then this complex allows the production of AraC by activating the pMalT promoter <a href="https://2012.igem.org/Team:Grenoble/Biology/Network#30">[12]</a>.<br/>
-
In the presence of arabinose, AraC, with cAMP-CRP, activates the pAraBAD promoter, forming thus an "AND" gate, which allow the production of:
+
In the presence of arabinose, AraC, with cAMP-CRP, activates the pAraBAD promoter <a href="https://2012.igem.org/Team:Grenoble/Biology/Network#30">[13]</a>, forming thus an "AND" gate, which allow the production of:
<ul><li>adenyl cyclase which reproduce cAMP, forming thus an amplification loop
<ul><li>adenyl cyclase which reproduce cAMP, forming thus an amplification loop
<li>GFP (Green Fluorescent Protein) = our output signal
<li>GFP (Green Fluorescent Protein) = our output signal
Line 93: Line 93:
<li><b>[11]</b> <a href="http://ecocyc.org/ECOLI/NEW-IMAGE?type=GENE&object=EG10170">Enzyme: adenyl cyclase</a></li>
<li><b>[11]</b> <a href="http://ecocyc.org/ECOLI/NEW-IMAGE?type=GENE&object=EG10170">Enzyme: adenyl cyclase</a></li>
<br/>
<br/>
-
<li><b>[12]</b>  
+
<li><b>[12]</b> <a href="http://ecocyc.org/ECOLI/NEW-IMAGE?type=OPERON&object=TU00091">Transcription Unit: malT</a></li>
 +
<br/>
 +
<li><b>[13]</b> <a href="http://ecocyc.org/ECOLI/NEW-IMAGE?type=OPERON&object=TU00214">Transcription Unit: araBAD</a></li>
 +
<br/>
</ul>
</ul>

Revision as of 22:34, 24 September 2012

iGEM Grenoble 2012

Project

Network details

Our system is divided in two modules:
  • signaling module
  • amplification module

Signaling module

The signaling module allows our bacterial strain to integrate the input signal = the pathogene presence.

This is also one of our module of modeling.

The idea of this module is du to the iGEM London Imperial College 2010 Team work on Parasight [1].

Staphylococcus aureus secretes an enzyme, exfoliative toxin B [2] which cut a specific amino-acids sequence (Desmoglein 1). This specific sequence can be used as a linker between a membrane protein and a dipeptide.
Once S. aureus is present, the linker is cut by the protease and the dipeptide is released.

The dipeptide binds to his receptor which is an engineered [3] [4] receptor:
  • the extracellular part is the extracellular part of Tap [5], a dipeptide receptor involved in the chemotaxism
  • the intracellular part is the intracellular part of EnvZ [6], a histidine kinase involved in the osmoregulation

Once the dipeptide is bound to the Tap part [7], the EnvZ part allows the phosphorylation of OmpR [8] [9], a transcriptional activator which is constitutively produced.

Amplification module

The amplification module allows our bacterial strain to amplify the input signal and to produce an output signal = fluorescence.

This is also one of our module of modeling.

Internal amplification


Once OmpR is phosphorylated, it allows the production of adenyl cyclase by activating the OmpC promoter [10].
Adenyl cyclase [11] is an enzyme which catalyse the conversion of ATP (Adenosine Tri-Phosphate) to cAMP (cyclic Adenosine Mono-Phosphate).


cAMP binds to CRP (C-reactive protein) and then this complex allows the production of AraC by activating the pMalT promoter [12].
In the presence of arabinose, AraC, with cAMP-CRP, activates the pAraBAD promoter [13], forming thus an "AND" gate, which allow the production of:
  • adenyl cyclase which reproduce cAMP, forming thus an amplification loop
  • GFP (Green Fluorescent Protein) = our output signal

External amplification

When one bacterium detecte S. aureus, it produces a lot of GFP and cAMP. cAMP can diffuse through the membrane and activates the amplification loop in all the neighbourings bacteria which can thus produce a lot of GFP and cAMP.
The result is an entire population which produce GFP whereas only one bacterium has detected the pathogen in the first place:


References

  • [1] https://2010.igem.org/Team:Imperial_College_London/Modules/Detection

  • [2] Masayuki Amagi, Takayuki Yamaguchi, Yasushi Hanakawa, Koji Nishifuji, Motoyuki Sugai, John R. Stanley. Staphylococcal Exfoliative Toxin B Specifically Cleaves Desmoglein 1. (2002). The Journal of Investigative Dermatology. Vol. 118, No. 5.

  • [3] J W Baumgartner, C Kim, R E Brissette, M Inouye, C Park, G L Hazelbauer. (1994). Transmembrane signalling by a hybrid protein: communication from the domain of chemoreceptor Trg that recognizes sugar-binding proteins to the kinase/phosphatase domain of osmosensors EnvZ. Journal of Bacteriology. Vol. 176, No. 4.

  • [4] Siromi Weerasuriya, Brian M. Schneider, Michael D. Manson. (1998). Chimeric Chemoreceptors in Escherichia coli: Signaling properties of Tar-Tap and Tap-Tar Hybrids. Journal of Bacteriology. Vol. 180, No. 4, p. 914-920.

  • [5] Polypeptide: Tap

  • [6] Protein: EnvZ sensory histidine kinase

  • [7] Michael D. Manson, Volker Blank, Gabriele Brade. (1986). Peptide chemotaxis in E. coli involves the Tap signal transducer and the dipeptide permease. Nature. Vol. 321.

  • [8] Sheng Jian Cai, Masayori Inouye. (2002). EnvZ-OmpR Interaction and Osmoregulation in Escherichia coli. The Journal of Biological Chemistry. Vol. 277, No. 27, p.24155-24161.

  • [9] ompR expression

  • [10] Sumio Maeda, Katsuhiko Takayanagi, Yoshifumi Nishimura, Takemi Maruyama, Kou Sato, and Takeshi Mizuno. (1991). Activation of the Osmoregulated ompC Gene by the OmpR Protein in Escherichia coli: A Study Involving Synthetic OmpR-Binding Sequences. Journal of Biochemistry. 110, 324-327.

  • [11] Enzyme: adenyl cyclase

  • [12] Transcription Unit: malT

  • [13] Transcription Unit: araBAD