Team:Grenoble/Modeling/Amplification/Sensitivity
From 2012.igem.org
(Difference between revisions)
Line 117: | Line 117: | ||
<ul><li>[1] Bionumbers. <a href="http://bionumbers.hms.harvard.edu/search.aspx?log=y&task=searchbytrmorg&trm=arac&org=">http://bionumbers.hms.harvard.edu/search.aspx?log=y&task=searchbytrmorg&trm=arac&org=</a> </li></ul> | <ul><li>[1] Bionumbers. <a href="http://bionumbers.hms.harvard.edu/search.aspx?log=y&task=searchbytrmorg&trm=arac&org=">http://bionumbers.hms.harvard.edu/search.aspx?log=y&task=searchbytrmorg&trm=arac&org=</a> </li></ul> | ||
<ul><li>[2] <u>Purification of and properties of the cyclic adenosine 2' ,5'-monophosphate receptor which mediates cyclic adenosine 3',5'-monophosphate dependent gene transcription in E. Coli.</u> </br>W.B. Aderson, A. B. Schneider, M. Emmer, R.L. Perlman, and I. Pasta</li></ul> | <ul><li>[2] <u>Purification of and properties of the cyclic adenosine 2' ,5'-monophosphate receptor which mediates cyclic adenosine 3',5'-monophosphate dependent gene transcription in E. Coli.</u> </br>W.B. Aderson, A. B. Schneider, M. Emmer, R.L. Perlman, and I. Pasta</li></ul> | ||
- | <ul><li>[3] <u>AraC protein, regulation of the L-arabinose operon inEscherichiacoli, and the light switch mechanism of AraC action</u> </br>Robert Schleif Biology Department, Johns Hopkins University, Baltimore, MD, USA. </li></ul> | + | <ul><li>[3] <u>AraC protein, regulation of the L-arabinose operon inEscherichiacoli, and the light switch mechanism of AraC action.</u> </br>Robert Schleif Biology Department, Johns Hopkins University, Baltimore, MD, USA. </li></ul> |
+ | <ul><li>[4] Epstein et Hesse 1975. </li></ul> | ||
+ | <ul><li>[5] <u>Transcriptional regulation shapes the organization of genes on bacterial chromosomes.</u></br>Sarath Chandra Janga, Heladia Salgado, Augustino Martinez. </br><a href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2699516/ ">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2699516/ </a> </li></ul> | ||
+ | <ul><li>[6] <u>Regulation of adenylate cyclase in E. coli.</u> </br>Edith Gstrein-Reider and Manfred Schweiger, Institut fur Biochemie (nat. Fak.), UniversitAt Innsbruck, A-6020 Innsbruck, Austria. </li></ul> | ||
+ | <ul><li>[7] <u>Purification and characterization of adenylate cyclase from E. coli K12.</u> </br>Yang and Epstein 1983. </li></ul> | ||
+ | <ul><li>[8] <u>Solubility and diffusion coefficient of adenosine 3’ :5’ – monophosphate.</u> </br>Martin Dworkin and Kenneth H. Keller, 1976. </li></ul> | ||
+ | <ul><li>[9] <a href="http://ccdb.wishartlab.com/CCDB/cgi-bin/STAT_NEW.cgi">http://ccdb.wishartlab.com/CCDB/cgi-bin/STAT_NEW.cgi</a> </li></ul> | ||
</section> | </section> | ||
</div> | </div> |
Revision as of 08:57, 21 September 2012
Classic Odes Parameters
Explanation 1
- Arac and Ca:
- CRP:
Explanation 2
We don’t know the value of the synthesis rate of adenylate cyclase, but we assume that there is less adenylate cyclase, because if there is a huge amont of adenylate cyclase, there will too much cAMP, and then cAMP will repress the adenylate cyclase production (see reference [6]). For the basal production, we make the same assumption as for Arac.Explanation 3
- Activations by (CRP-cAMP):
- Activation by Arac*:
Explanation 4
Inspired from Arac. By discussing with the biologists we concluded that Ca is also a stable protein.Explanation 5
By discussing with the biologists, we assumed that there is around 10 times more cAMP out of the cell than inside the cell.Explanation 6
In the reference [6], we have kcat=100 min-1 in vitro. However, by discussing with the biologists, we assumed that in vivo this value was higher.Quorum sensing parameters
Explanation 1
We assumed that they wouldn’t be glued together, but not too far at the same time.Explanation 2
We work above the threshold, because we want to know the speed of the diffusion when we have a detection.References
- [1] Bionumbers. http://bionumbers.hms.harvard.edu/search.aspx?log=y&task=searchbytrmorg&trm=arac&org=
- [2] Purification of and properties of the cyclic adenosine 2' ,5'-monophosphate receptor which mediates cyclic adenosine 3',5'-monophosphate dependent gene transcription in E. Coli. W.B. Aderson, A. B. Schneider, M. Emmer, R.L. Perlman, and I. Pasta
- [3] AraC protein, regulation of the L-arabinose operon inEscherichiacoli, and the light switch mechanism of AraC action. Robert Schleif Biology Department, Johns Hopkins University, Baltimore, MD, USA.
- [4] Epstein et Hesse 1975.
- [5] Transcriptional regulation shapes the organization of genes on bacterial chromosomes.Sarath Chandra Janga, Heladia Salgado, Augustino Martinez. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2699516/
- [6] Regulation of adenylate cyclase in E. coli. Edith Gstrein-Reider and Manfred Schweiger, Institut fur Biochemie (nat. Fak.), UniversitAt Innsbruck, A-6020 Innsbruck, Austria.
- [7] Purification and characterization of adenylate cyclase from E. coli K12. Yang and Epstein 1983.
- [8] Solubility and diffusion coefficient of adenosine 3’ :5’ – monophosphate. Martin Dworkin and Kenneth H. Keller, 1976.