Team:Grenoble/Biology/Network
From 2012.igem.org
(Difference between revisions)
Greghansen (Talk | contribs) |
|||
Line 7: | Line 7: | ||
<h1>Network details</h1> | <h1>Network details</h1> | ||
Our system is divided in two modules: | Our system is divided in two modules: | ||
- | <ul><li>signaling module | + | <ul><li>a signaling module |
- | <li>amplification module<br/> | + | <li>an amplification module<br/> |
</section> | </section> | ||
<a href="https://2012.igem.org/Team:Grenoble/Biology/Network#20" class="schema" ><img src="https://static.igem.org/mediawiki/2012/b/b1/Circuit_complet.png" alt="" style="position: relative; top: 34px; left: 5px;"/></a> | <a href="https://2012.igem.org/Team:Grenoble/Biology/Network#20" class="schema" ><img src="https://static.igem.org/mediawiki/2012/b/b1/Circuit_complet.png" alt="" style="position: relative; top: 34px; left: 5px;"/></a> | ||
Line 15: | Line 15: | ||
<section style="position: relative; top: -80px;"> | <section style="position: relative; top: -80px;"> | ||
- | <h2 id="10"> | + | <h2 id="10">The signaling module</h2> |
- | The signaling module allows our | + | The signaling module allows our bacteria strain to integrate the input signal = the pathogene presence.<br/> |
<br/> | <br/> | ||
- | This is | + | This is a <a href="https://2012.igem.org/Team:Grenoble/Modeling/Signaling">modelized module </a>.<br/> |
<br/> | <br/> | ||
<center><img src="https://static.igem.org/mediawiki/2012/e/e1/Signaling_gre.png"/></center> | <center><img src="https://static.igem.org/mediawiki/2012/e/e1/Signaling_gre.png"/></center> | ||
<br/> | <br/> | ||
- | The idea | + | The idea behind this module comes from the iGEM London Imperial College 2010 Team's work on Parasight <a href="https://2012.igem.org/Team:Grenoble/Biology/Network#30">[1]</a>. <br/> |
<br/> | <br/> | ||
- | <i>Staphylococcus aureus</i> secretes | + | <i>Staphylococcus aureus</i> secretes the exfoliative toxin B <a href="https://2012.igem.org/Team:Grenoble/Biology/Network#30">[2]</a> which cleaves a specific amino-acids sequence (Desmoglein 1). This specific sequence can be used as a linker between a membrane protein and a dipeptide.<br/> |
- | Once <i>S. aureus</i> is present, the linker is cut by the | + | Once <i>S. aureus</i> is present, the linker is cut by the toxin and the dipeptide is released.<br/> |
<br/> | <br/> | ||
- | The dipeptide binds | + | The dipeptide binds its receptor which was engineered <a href="https://2012.igem.org/Team:Grenoble/Biology/Network#30">[3]</a> <a href="https://2012.igem.org/Team:Grenoble/Biology/Network#30">[4]</a> by the team: |
- | <ul><li> | + | <ul><li>the extracellular part of Tap <a href="https://2012.igem.org/Team:Grenoble/Biology/Network#30">[5]</a> is a dipeptide receptor involved in the chemotaxism</li> |
- | <li> | + | <li>the intracellular part of EnvZ <a href="https://2012.igem.org/Team:Grenoble/Biology/Network#30">[6]</a> is a histidine kinase involved in the osmoregulation</li> |
</ul> | </ul> | ||
<br/> | <br/> | ||
- | Once the dipeptide | + | Once the dipeptide binds the Tap part <a href="https://2012.igem.org/Team:Grenoble/Biology/Network#30">[7]</a>, the intracellular EnvZ part allows the phosphorylation of OmpR <a href="https://2012.igem.org/Team:Grenoble/Biology/Network#30">[8]</a> <a href="https://2012.igem.org/Team:Grenoble/Biology/Network#30">[9]</a>, which is a constitutively produced transcriptional activator.<br/> |
<br/> | <br/> | ||
- | + | OmpR phosphorylation's allows the activation of the OmpC promoter<a href="https://2012.igem.org/Team:Grenoble/Biology/Network#30">[10]</a>. | |
</section> | </section> | ||
<section style="position: relative; top: -80px;"> | <section style="position: relative; top: -80px;"> | ||
Line 42: | Line 42: | ||
<h2 id="20">Amplification module</h2> | <h2 id="20">Amplification module</h2> | ||
- | The amplification module allows our | + | The amplification module allows our bacteria to amplify the input signal and to produce an output signal = fluorescence.<br/> |
<br/> | <br/> | ||
This is also <a href="https://2012.igem.org/Team:Grenoble/Modeling/Amplification">one of our module of modeling</a>.<br/> | This is also <a href="https://2012.igem.org/Team:Grenoble/Modeling/Amplification">one of our module of modeling</a>.<br/> | ||
Line 49: | Line 49: | ||
<center><img src="https://static.igem.org/mediawiki/2012/f/fc/Amplifcation1.png"/></center> | <center><img src="https://static.igem.org/mediawiki/2012/f/fc/Amplifcation1.png"/></center> | ||
<br/> | <br/> | ||
- | The activation of the OmpC promoter | + | The activation of the OmpC promoter allows the production of Adenyl cyclase <a href="https://2012.igem.org/Team:Grenoble/Biology/Network#30">[11]</a>. Adenyl cyclase catalyses the conversion of ATP (Adenosine Tri-Phosphate) into cAMP (cyclic Adenosine Mono-Phosphate).<br/> |
<br/> | <br/> | ||
<center><img src="https://static.igem.org/mediawiki/2012/c/c7/AND.png"/></center> | <center><img src="https://static.igem.org/mediawiki/2012/c/c7/AND.png"/></center> | ||
<br/> | <br/> | ||
- | cAMP | + | The binding of cAMP to CRP (C-reactive protein) leads to the production of AraC by activating the pMalT promoter <a href="https://2012.igem.org/Team:Grenoble/Biology/Network#30">[12]</a>.<br/> |
- | In the presence of arabinose, AraC | + | In the presence of arabinose, AraC and cAMP-CRP, cooperatively activate the pAraBAD promoter <a href="https://2012.igem.org/Team:Grenoble/Biology/Network#30">[13]</a>, thus forming an "AND" gate. This allows the production of: |
- | <ul><li> | + | <ul><li>Adenyl cyclase which reproduces cAMP, forming thus an amplification loop |
<li>GFP (Green Fluorescent Protein) = our output signal | <li>GFP (Green Fluorescent Protein) = our output signal | ||
</ul> | </ul> | ||
<br/> | <br/> | ||
<h3 id="8">External amplification</h3> | <h3 id="8">External amplification</h3> | ||
- | When | + | When a bacterium detects <i>S. aureus</i>, it produces a several molecules of GFP and evenmore cAMP. cAMP diffuses through the membrane and activates the amplification loop in all the neighbouring bacteria <a href="https://2012.igem.org/Team:Grenoble/Biology/Network#30">[14]</a>, which triggers the production of GFP and cAMP.<br/> |
- | + | This leads to an entire population which produces GFP where only a bacterium detected the pathogen in the first place:<br/> | |
<br/> | <br/> | ||
<center><img src="https://static.igem.org/mediawiki/2012/b/bf/Img_com.png" /></center> | <center><img src="https://static.igem.org/mediawiki/2012/b/bf/Img_com.png" /></center> | ||
Line 72: | Line 72: | ||
<h2 id="30">References</h2> | <h2 id="30">References</h2> | ||
<ul> | <ul> | ||
- | <li><b>[1]</b> <a href="https://2010.igem.org/Team:Imperial_College_London/Modules/Detection" target="_blank">Imperial college | + | <li><b>[1]</b> <a href="https://2010.igem.org/Team:Imperial_College_London/Modules/Detection" target="_blank">Imperial college 2010's detection module</a></li> |
<br/> | <br/> | ||
<li><b>[2]</b> <a href="http://www.nature.com/jid/journal/v118/n5/full/5601482a.html" target="_blank">Masayuki Amagi, Takayuki Yamaguchi, Yasushi Hanakawa, Koji Nishifuji, Motoyuki Sugai, John R. Stanley. Staphylococcal Exfoliative Toxin B Specifically Cleaves Desmoglein 1. (2002). <i>The Journal of Investigative Dermatology</i>. Vol. 118, No. 5.</a></li> | <li><b>[2]</b> <a href="http://www.nature.com/jid/journal/v118/n5/full/5601482a.html" target="_blank">Masayuki Amagi, Takayuki Yamaguchi, Yasushi Hanakawa, Koji Nishifuji, Motoyuki Sugai, John R. Stanley. Staphylococcal Exfoliative Toxin B Specifically Cleaves Desmoglein 1. (2002). <i>The Journal of Investigative Dermatology</i>. Vol. 118, No. 5.</a></li> |
Revision as of 23:53, 24 September 2012
Network details
Our system is divided in two modules:- a signaling module
- an amplification module
The signaling module
The signaling module allows our bacteria strain to integrate the input signal = the pathogene presence.This is a modelized module .
The idea behind this module comes from the iGEM London Imperial College 2010 Team's work on Parasight [1].
Staphylococcus aureus secretes the exfoliative toxin B [2] which cleaves a specific amino-acids sequence (Desmoglein 1). This specific sequence can be used as a linker between a membrane protein and a dipeptide.
Once S. aureus is present, the linker is cut by the toxin and the dipeptide is released.
The dipeptide binds its receptor which was engineered [3] [4] by the team:
- the extracellular part of Tap [5] is a dipeptide receptor involved in the chemotaxism
- the intracellular part of EnvZ [6] is a histidine kinase involved in the osmoregulation
Once the dipeptide binds the Tap part [7], the intracellular EnvZ part allows the phosphorylation of OmpR [8] [9], which is a constitutively produced transcriptional activator.
OmpR phosphorylation's allows the activation of the OmpC promoter[10].
Amplification module
The amplification module allows our bacteria to amplify the input signal and to produce an output signal = fluorescence.This is also one of our module of modeling.
Internal amplification
The activation of the OmpC promoter allows the production of Adenyl cyclase [11]. Adenyl cyclase catalyses the conversion of ATP (Adenosine Tri-Phosphate) into cAMP (cyclic Adenosine Mono-Phosphate).
The binding of cAMP to CRP (C-reactive protein) leads to the production of AraC by activating the pMalT promoter [12].
In the presence of arabinose, AraC and cAMP-CRP, cooperatively activate the pAraBAD promoter [13], thus forming an "AND" gate. This allows the production of:
- Adenyl cyclase which reproduces cAMP, forming thus an amplification loop
- GFP (Green Fluorescent Protein) = our output signal
External amplification
When a bacterium detects S. aureus, it produces a several molecules of GFP and evenmore cAMP. cAMP diffuses through the membrane and activates the amplification loop in all the neighbouring bacteria [14], which triggers the production of GFP and cAMP.This leads to an entire population which produces GFP where only a bacterium detected the pathogen in the first place:
References
- [1] Imperial college 2010's detection module
- [2] Masayuki Amagi, Takayuki Yamaguchi, Yasushi Hanakawa, Koji Nishifuji, Motoyuki Sugai, John R. Stanley. Staphylococcal Exfoliative Toxin B Specifically Cleaves Desmoglein 1. (2002). The Journal of Investigative Dermatology. Vol. 118, No. 5.
- [3] J W Baumgartner, C Kim, R E Brissette, M Inouye, C Park, G L Hazelbauer. (1994). Transmembrane signalling by a hybrid protein: communication from the domain of chemoreceptor Trg that recognizes sugar-binding proteins to the kinase/phosphatase domain of osmosensors EnvZ. Journal of Bacteriology. Vol. 176, No. 4.
- [4] Siromi Weerasuriya, Brian M. Schneider, Michael D. Manson. (1998). Chimeric Chemoreceptors in Escherichia coli: Signaling properties of Tar-Tap and Tap-Tar Hybrids. Journal of Bacteriology. Vol. 180, No. 4, p. 914-920.
- [5] Polypeptide: Tap
- [6] Protein: EnvZ sensory histidine kinase
- [7] Michael D. Manson, Volker Blank, Gabriele Brade. (1986). Peptide chemotaxis in E. coli involves the Tap signal transducer and the dipeptide permease. Nature. Vol. 321.
- [8] Sheng Jian Cai, Masayori Inouye. (2002). EnvZ-OmpR Interaction and Osmoregulation in Escherichia coli. The Journal of Biological Chemistry. Vol. 277, No. 27, p.24155-24161.
- [9] ompR expression
- [10] Sumio Maeda, Katsuhiko Takayanagi, Yoshifumi Nishimura, Takemi Maruyama, Kou Sato, and Takeshi Mizuno. (1991). Activation of the Osmoregulated ompC Gene by the OmpR Protein in Escherichia coli: A Study Involving Synthetic OmpR-Binding Sequences. Journal of Biochemistry. 110, 324-327.
- [11] Enzyme: adenyl cyclase
- [12] Transcription Unit: malT
- [13] Transcription Unit: araBAD
- [14] Balagaddé F. K., Song H., Ozaki J., Collins C. H., Barnet M., Arnold F. H., Quake S. R., You L. (2008). A synthetic Escherichia coli predator-prey ecosystem. Molecular Systems Biology. 4:187.