Team:Grenoble/Modeling/Amplification/ODE
From 2012.igem.org
(Difference between revisions)
Line 290: | Line 290: | ||
</br> | </br> | ||
</br> | </br> | ||
- | <a href="https://static.igem.org/mediawiki/2012/9/9e/Steadys_state_study.zip">Here</a> you can find the scripts | + | <a href="https://static.igem.org/mediawiki/2012/9/9e/Steadys_state_study.zip">Here</a> you can find the scripts we worked with in this part. First, I give the isoclines with cAMP<SUB>init</SUB>=10<SUP>-5</SUP> mol/L. |
</br> | </br> | ||
</br> | </br> | ||
Line 307: | Line 307: | ||
<center><img src="https://static.igem.org/mediawiki/2012/4/49/Graphe8_ampli_grenoble.png" alt="" /></center> | <center><img src="https://static.igem.org/mediawiki/2012/4/49/Graphe8_ampli_grenoble.png" alt="" /></center> | ||
</br> | </br> | ||
- | Ca and Arac isoclines with | + | Ca and Arac isoclines with cAMP<SUB>init</SUB>=10<SUP>-6</SUP> mol/L. |
</br> | </br> | ||
</br> | </br> | ||
Line 315: | Line 315: | ||
<center><img src="https://static.igem.org/mediawiki/2012/0/08/Graphe9_ampli_grenoble.png" alt="" /></center> | <center><img src="https://static.igem.org/mediawiki/2012/0/08/Graphe9_ampli_grenoble.png" alt="" /></center> | ||
</br> | </br> | ||
+ | Ca and Arac isoclines with cAMP<SUB>init</SUB>=10<SUP>-6</SUP> mol/L, zoom around 0. | ||
+ | </br> | ||
+ | </br> | ||
+ | We notice that there is no low steady state, but only a high one. | ||
+ | </br> | ||
+ | </br> | ||
+ | Eventually, I give the isoclines with cAMP<SUB>init</SUB>=10<SUP>-7</SUP> mol/L: | ||
+ | </br> | ||
+ | </br> | ||
+ | <center><img src="https://static.igem.org/mediawiki/2012/8/85/Graphe10_ampli_grenoble.png" alt="" /></center> | ||
+ | </br> | ||
+ | Ca and Arac isoclines with cAMP<SUB>init</SUB>=10<SUP>-7</SUP> mol/L. | ||
+ | </br> | ||
+ | </br> | ||
+ | We have the same graph as previously. We zoom around 0 again: | ||
+ | </br> | ||
+ | </br> | ||
+ | <center><img src="https://static.igem.org/mediawiki/2012/6/60/Graphe11_ampli_grenoble.png" alt="" /></center> | ||
+ | </br> | ||
+ | Ca and Arac isoclines with cAMP<SUB>init</SUB>=10<SUP>-7</SUP> mol/L, zoom around 0. | ||
+ | </br> | ||
+ | </br> | ||
+ | We can still see a high steady state, but this time there also is a low one! | ||
+ | </br> | ||
+ | </br> | ||
+ | To actually answer the question to know where our system will always tend to stay we need to be sure that these steady states are stable. If they are when our system stops to one of these steady states, it will always stay there. It works like this: | ||
+ | </br> | ||
+ | </br> | ||
+ | <center><img src="https://static.igem.org/mediawiki/2012/7/79/Stab_point_grenoble.png" alt="" /></center> | ||
+ | </br> | ||
+ | </br> | ||
+ | To answer the question of the stability, we follow the classic dynamical system method. We first linearize the system around the steady states. We have: | ||
+ | </br> | ||
+ | </br> | ||
+ | <center><img src="https://static.igem.org/mediawiki/2012/8/81/Eq28_grenoble.png" alt="" /></center> | ||
+ | </br> | ||
+ | </br> | ||
+ | The equilibrium points are <img src="https://static.igem.org/mediawiki/2012/5/50/Eq29_grenoble.png" alt="" /> | ||
+ | </br> | ||
+ | We compute the matrix <img src="https://static.igem.org/mediawiki/2012/b/be/Eq30_grenoble.png" alt="" /> | ||
+ | </br> | ||
+ | </br> | ||
+ | <center><img src="https://static.igem.org/mediawiki/2012/4/4e/Eq31_grenoble.png" alt="" /></center> | ||
+ | </br> | ||
+ | </br> | ||
+ | Thus, we have | ||
+ | </br> | ||
+ | </br> | ||
+ | <center><img src="https://static.igem.org/mediawiki/2012/2/2e/Eq32_grenoble.png" alt="" /></center> | ||
+ | </br> | ||
+ | </br> | ||
+ | Let us call λ<SUB>1</SUB> and λ<SUB>2</SUB> the eigenvalues of the matrix. Then, we get the solution of the system around the equilibrium points: | ||
+ | </br> | ||
+ | </br> | ||
+ | <center><img src="https://static.igem.org/mediawiki/2012/7/7d/Eq33_grenoble.png" alt="" /></center> | ||
+ | </br> | ||
+ | </br> | ||
+ | We give the computed values of the steady states and of the eigenvalues for: | ||
+ | </br> | ||
+ | </br> | ||
+ | - cAMP<SUB>init</SUB>=10<SUP>-5</SUP> mol/L: | ||
+ | </br> | ||
+ | </br> | ||
+ | Arac steady state =10<SUP>-4</SUP> *0.167058129527727 mol/L | ||
+ | </br> | ||
+ | </br> | ||
+ | Ca seady states = 10<SUP>-6</SUP>*0.1837444563636 mol/L | ||
+ | </br> | ||
+ | </br> | ||
+ | λ<SUB>1</SUB>= -0.006000000912526 λ<SUB>2 </SUB>= -0.005763188664176 | ||
+ | </br> | ||
+ | </br> | ||
+ | </br> | ||
+ | - cAMP<SUB>init</SUB>=10<SUP>-6</SUP> mol/L: | ||
+ | </br> | ||
+ | </br> | ||
+ | Arac steady state =10<SUP>-4</SUP> *0.166879570344986 mol/L | ||
+ | </br> | ||
+ | </br> | ||
+ | Ca seady states = 10<SUP>-6</SUP>*0.1832826298080 mol/L | ||
+ | </br> | ||
+ | </br> | ||
+ | λ<SUB>1</SUB>= -0.006000000910603 λ<SUB>2</SUB>= -0.005745344108236 | ||
+ | </br> | ||
+ | </br> | ||
+ | </br> | ||
+ | - cAMP<SUB>init</SUB>=10<SUP>-7</SUP> mol/L: | ||
+ | </br> | ||
+ | </br> | ||
+ | Arac steady state = 10<SUP>-6</SUP> *0.182361098919416 mol/L | ||
+ | </br> | ||
+ | </br> | ||
+ | Ca seady states = 10<SUP>-9</SUP>*0.249177541683 mol/L | ||
+ | </br> | ||
+ | </br> | ||
+ | λ<SUB>1</SUB>= -0.006000006994365 λ<SUB>2 </SUB>= -0.002117175391388 | ||
+ | </br> | ||
+ | </br> | ||
+ | </br> | ||
+ | The steady states are globally stable if and only if the real part of the proper values is < 0 . | ||
+ | </br> | ||
+ | </br> | ||
+ | Their real part are always < 0 ! The steady states are stable. | ||
+ | |||
</section> | </section> | ||
</div> | </div> |
Revision as of 08:05, 21 September 2012
Preliminary
We will use the quasi steady state approximation (QSSA) then. The idea is that there are quick reactions, such as enzymatic ones, complexations, etc… And there are slow reactions such as protein production. We assume that the evolution speed of an element that is created only by quick reaction is null.Goal
In this part, we want to answer to three questions:- What is the sensitivity of our system?
- What is the time response?
- What steady states will our system always reach?