Team:Grenoble/Modeling/Amplification/Stochastic

From 2012.igem.org

(Difference between revisions)
 
(54 intermediate revisions not shown)
Line 4: Line 4:
<body id="Modeling">
<body id="Modeling">
<div id="cadre">
<div id="cadre">
 +
<!--<section>
 +
<center>
 +
<a href="https://2012.igem.org/wiki/index.php?title=Team:Grenoble/Modeling/Amplification/ODE"><img src="https://static.igem.org/mediawiki/2012/e/ef/ODE.png" alt="" /></a>
 +
&nbsp;&nbsp;&nbsp;&nbsp;
 +
<a href="https://2012.igem.org/wiki/index.php?title=Team:Grenoble/Modeling/Amplification/Sensitivity"><img src="https://static.igem.org/mediawiki/2012/a/a4/Sensitivity_and_parameters.png" alt="" /></a>
 +
&nbsp;&nbsp;&nbsp;&nbsp;
 +
<a href="https://2012.igem.org/wiki/index.php?title=Team:Grenoble/Modeling/Amplification/Quorum"><img src="https://static.igem.org/mediawiki/2012/6/65/Quorum_Sensing.png" alt="" /></a>
 +
&nbsp;&nbsp;&nbsp;&nbsp;
 +
<a href="https://2012.igem.org/wiki/index.php?title=Team:Grenoble/Modeling/Amplification/Stochastic"><img src="https://static.igem.org/mediawiki/2012/a/ad/Stochastic_analysis.png" alt="" /></a>
 +
</center>
 +
</section>-->
<section>
<section>
-
<h1> Goal </h1>
+
<center>
-
</br>
+
<a href="https://2012.igem.org/wiki/index.php?title=Team:Grenoble/Modeling/Amplification/Stochastic/what"><img src="https://static.igem.org/mediawiki/2012/d/d9/What.png" alt="" /></a>
-
Statistic modeling is a technique of presenting data or predicting outcomes that takes into account a certain degree of randomness or unpredictability. The stochastic process is often used to represent the evolution of some random value, or system, over time.
+
<a href="https://2012.igem.org/Team:Grenoble/Modeling/Amplification/Stochastic/results"><img src="https://static.igem.org/mediawiki/2012/1/17/Results.png" alt="" /></a>
-
</br>
+
</center>
-
<center><img src="https://static.igem.org/mediawiki/2012/e/e7/Stochastic_def.png" alt="" /></center>
+
-
</br>
+
-
It is the probabilistic counterpart to a deterministic process.
+
-
<center><img src="https://static.igem.org/mediawiki/2012/3/38/Diagram_stoch.png" alt="" /></center>
+
-
<h1> Why </h1>
+
-
</br>
+
-
Gene expression is a stochastic process due to the inherent unpredictability of molecular collisions resulting from Brownian motion : the binding or unbinding of RNA polymerase to a promotor is partially random.
+
-
In biology systems, introducing stochastic noise has been found to help improve the signal strength of the internal feedback loops for balance and other vestibular communication.
+
-
</br>
+
-
</br>
+
-
<h1> How </h1>
+
-
</br>
+
-
Rather than using fixed variables such as in other mathematical modeling, a stochastic model incorporates random variations to predict future conditions and to see what they might be like.
+
-
</br>
+
-
To introduce that randomness we use a new function : propensities.
+
-
</br>
+
-
</br>
+
-
<center><img src="https://static.igem.org/mediawiki/2012/c/ca/Propensity.png" alt="" /></center>
+
-
</br>
+
-
For example we take four possible reactions. Each reaction has a probability to happen in the next amount of time.
+
-
</br>
+
-
<center><img src="https://static.igem.org/mediawiki/2012/8/8c/Reactions.png" alt="" /></center>
+
</section>
</section>
</div>
</div>

Latest revision as of 16:57, 23 September 2012

iGEM Grenoble 2012

Project