Team:Grenoble/Modeling/Introduction

From 2012.igem.org

(Difference between revisions)
m
 
(34 intermediate revisions not shown)
Line 5: Line 5:
<div id="cadre">
<div id="cadre">
<section>
<section>
-
<!--<div>
+
 
-
<a href="javascript:toggleVisibility('texte1')">
+
<section>
-
Démonstration
+
<h1>Overview</h1>
-
</a>
+
To model the system, we divided it into <a href="https://2012.igem.org/Team:Grenoble/Biology/Introduction#scheme">three modules</a>:
 +
</br>
 +
</br>
 +
<div style="margin-left: 30px;">
 +
<a href="https://2012.igem.org/Team:Grenoble/Modeling/Signaling" style="font-size: 1.2em;"><img src="https://static.igem.org/mediawiki/2012/4/49/1_mod.png" alt="" />Signaling module </a>
 +
</br>
 +
</br>
 +
In this part we used a deterministic model to determine the sensitivity of the sensor. This analysis enabled us to know that the amplification module is required for the incoming signal to drive the subsequent modules.
</div>
</div>
-
<div id="texte1" style="visibility: hidden; display: none;">
+
<br/>
-
<math> $ \frac{d[TetR]}{dt} = \frac{k_{pLac}.[pLac]_{tot}}{1 + (\frac{[lacI]}{K_{pLac} + \frac{K_{pLac}.[IPTG]}{K_{lacI-IPTG}}.})^\beta} - \delta_{TetR}.[TetR] $</math>
+
<div style="margin-left: 30px;">
 +
<a href="https://2012.igem.org/Team:Grenoble/Modeling/Amplification" style="font-size: 1.2em;"><img src="https://static.igem.org/mediawiki/2012/1/1e/2_mod.png" alt="" />Internal amplification module</a>
 +
</br>
 +
</br>
 +
We first used deterministic model to evaluate the sensitivity of the amplification loop and determine the response time. A steady state analysis was performed to understand how the system works.
</div>
</div>
-
<p>Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nulla magna risus, dapibus non mollis in, mollis non nulla. Maecenas non lorem lacus. Vivamus non odio odio. In pharetra est justo, adipiscing porttitor lectus. Nunc facilisis placerat ipsum sed mattis. Vestibulum vitae lectus vitae urna ullamcorper molestie sed vitae felis. Nam ac nisi auctor arcu placerat lobortis eu non tellus. In eget diam lorem, quis placerat sem. Nulla in consectetur justo. In aliquam hendrerit diam in venenatis. Integer tellus dui, porttitor in faucibus eu, convallis at nulla. Curabitur vitae quam nunc, in vestibulum orci.</p>-->
+
<br/>
-
 
+
<div style="margin-left: 30px;">
 +
<a href="https://2012.igem.org/Team:Grenoble/Modeling/Amplification/Quorum" style="font-size: 1.2em;"><img src="https://static.igem.org/mediawiki/2012/5/57/3_mod.png" alt="" />External amplification and communication</a>
 +
</br>
 +
</br>
 +
Then, we studied the communication between the bacteria to evaluate the time collective response time of a bacterial population as a whole.
 +
</br>
 +
</br>
 +
Because we know that the production of protein is not always turned on or turned off, this can lead to false positives/negatives. We also evaluated the false positives rate of our sensor using a stochastic model.  
 +
</div>
 +
</br>
</section>
</section>
</div>
</div>

Latest revision as of 02:54, 27 September 2012

iGEM Grenoble 2012

Project

Overview

To model the system, we divided it into three modules:

Signaling module

In this part we used a deterministic model to determine the sensitivity of the sensor. This analysis enabled us to know that the amplification module is required for the incoming signal to drive the subsequent modules.

Internal amplification module

We first used deterministic model to evaluate the sensitivity of the amplification loop and determine the response time. A steady state analysis was performed to understand how the system works.

External amplification and communication

Then, we studied the communication between the bacteria to evaluate the time collective response time of a bacterial population as a whole.

Because we know that the production of protein is not always turned on or turned off, this can lead to false positives/negatives. We also evaluated the false positives rate of our sensor using a stochastic model.