Team:OUC-China/Modeling/ParameterSweep

From 2012.igem.org

(Difference between revisions)
Line 14: Line 14:
padding:0;
padding:0;
margin:0;
margin:0;
-
overflow-x:hidden;
+
overflow-x:auto;
font: 500 12px/1.625 "Helvetica Neue", Helvetica, Arial, sans-serif;
font: 500 12px/1.625 "Helvetica Neue", Helvetica, Arial, sans-serif;
 +
}
 +
#top-section{
 +
width:99%;
}
}
#page{
#page{
Line 143: Line 146:
height: 50px;
height: 50px;
-
width:100%;
+
width:1349px;
margin-top:0;
margin-top:0;
margin-bottom:-10px;
margin-bottom:-10px;
background-color:#1487DF;
background-color:#1487DF;
-
border-top-width:10px;
+
border:none;
-
border-top-color:#F7F5F5;
+
padding-left:0;
-
border-bottom:none;
+
padding-right:0;
}
}
#footer a
#footer a

Revision as of 19:05, 18 October 2012

Parameter sweep


Aim:To discover the optimized ranges of important parameters.

Steps:



Brief Result:We determined the optimal parameter ranges for the ternary system, and selected a best parameter set for noise analysis.

Why choose slope as an indicator?

Slope is given by : Slope= Δ[m]steady/Δratio=2* ([m]steady1:1 - [m]steady1:2)



Also slope is not the only candidate indicator, the other indicator candidates weeded out are given below:



‘Sensitive’ does not means ‘important’


Sensitive does not means important, for sensitive parameters are fixed inherently and are not adjustable, always.
We swept 4 parameters for the reasons given below:



Establish parameter sweep database (4 parameters at the same time)


We swept km,βm,αm, ks at the same time and collected 120,000 3-ODE steady-state datapoints by mass computation.
For the database is a collection of 5-Dimensional data points, it’s rational to show the result in the format of projection on 2-D surface to indicate the relationship between slope and arbitrary 2 parameters we swept


Comparator(slope vs. arbitrary 2 parameters)




Ratio Senor(slope vs. arbitrary 2 parameters)


Determine optimal parameter range


We screened the database to get rid of unreasonable datapoints with restrictions:



We will use the best parameter set to perform noise analysis.