Team:UNAM Genomics Mexico/Modeling

From 2012.igem.org

(Difference between revisions)
Line 5: Line 5:
<br />
<br />
<br />
<br />
-
<html>
+
 
<table border="0"  height="150" cellspacing="15" bgcolor="transparent" id="tablecontentbg">
<table border="0"  height="150" cellspacing="15" bgcolor="transparent" id="tablecontentbg">
Line 14: Line 14:
</tr>
</tr>
</table>
</table>
-
</html>
+
 
 +
=Modelling Overview=
 +
 
 +
In this chapter of the project’s description, we would like to take a moment to wonder, why should we make a model? Obviously, this part of the description was written by team members that worked creating the model, so I wouldn’t be surprised if it turns out to be biased in favor of models being awesome (not just computational models, also beauty pageants). First, it is quite useful when groping in the dark searching for a project. It helps the design of a project, making sure it is planned the best way possible. If it wasn’t for the model, maybe we would have chosen some other Escherichia coli’s transcription factors that cross talked with ''Bacillus subtilis'', instead of our current transcription factors, which minimize the noise with their lack of cross talk. While gossip is enjoyable at a market, it’s better to avoid it at a molecular level.
 +
<br />
 +
<br />
 +
Another reason to spend the time it takes to make a model is the prediction of behavior. Sure, right now nobody would think that Bacillus subtilis would explode violently if it was put in an environment at 30° Celsius, but that is a generalization of something that someone realized sometime. We could say that we were using a model when we grew Bacillus subtilis at 30° Celsius. Well, it’s easy to see why that wouldn’t convince anyone to make a computational model, or participate in a beauty pageant, so we will try using our own model and its predictions as an example. For instance, our model predicted that our Boolean Or was going to act as a Boolean Or. Had it predicted something else, chances are that many members of our team would have committed suicide. In most civilizations, control over life and death would be enough argument for making a model.
 +
<br />
 +
<br />
 +
The third and final argument for making a computational model is the characterization in silico. Sure, for Tony Stark and Batman, it’s easy to afford a really big amount of wetlab experiments, but for the rest of us mortals, that’s not always possible. It’s in these cases when computers come to the rescue. Instead of repeating once and again the same experiment varying slightly the parameters, we can simulate our system and predict the outcome. Of course it takes time to make a simulation, and find the correct parameters for it, but it takes more time to earn the money to pay for the darned experiments.
 +
<br />
 +
<br />

Revision as of 20:51, 26 September 2012


UNAM-Genomics_Mexico


Under Construction




Nanotubes!! The logic Random info

Modelling Overview

In this chapter of the project’s description, we would like to take a moment to wonder, why should we make a model? Obviously, this part of the description was written by team members that worked creating the model, so I wouldn’t be surprised if it turns out to be biased in favor of models being awesome (not just computational models, also beauty pageants). First, it is quite useful when groping in the dark searching for a project. It helps the design of a project, making sure it is planned the best way possible. If it wasn’t for the model, maybe we would have chosen some other Escherichia coli’s transcription factors that cross talked with Bacillus subtilis, instead of our current transcription factors, which minimize the noise with their lack of cross talk. While gossip is enjoyable at a market, it’s better to avoid it at a molecular level.

Another reason to spend the time it takes to make a model is the prediction of behavior. Sure, right now nobody would think that Bacillus subtilis would explode violently if it was put in an environment at 30° Celsius, but that is a generalization of something that someone realized sometime. We could say that we were using a model when we grew Bacillus subtilis at 30° Celsius. Well, it’s easy to see why that wouldn’t convince anyone to make a computational model, or participate in a beauty pageant, so we will try using our own model and its predictions as an example. For instance, our model predicted that our Boolean Or was going to act as a Boolean Or. Had it predicted something else, chances are that many members of our team would have committed suicide. In most civilizations, control over life and death would be enough argument for making a model.

The third and final argument for making a computational model is the characterization in silico. Sure, for Tony Stark and Batman, it’s easy to afford a really big amount of wetlab experiments, but for the rest of us mortals, that’s not always possible. It’s in these cases when computers come to the rescue. Instead of repeating once and again the same experiment varying slightly the parameters, we can simulate our system and predict the outcome. Of course it takes time to make a simulation, and find the correct parameters for it, but it takes more time to earn the money to pay for the darned experiments.