Team:Groningen/pigmentproduction
From 2012.igem.org
m |
m |
||
Line 43: | Line 43: | ||
font-size:12pt; | font-size:12pt; | ||
line-height:14pt; | line-height:14pt; | ||
+ | margin-top: 0px; | ||
+ | margin-bottom: 0px; | ||
margin-right:150px; | margin-right:150px; | ||
margin-left:150px; | margin-left:150px; |
Revision as of 17:33, 26 October 2012
We wanted to use pigments as reporter in our designed genetic construct. Why did we choose for pigments and not use a common
reporter like Green Fluorescent Protein (GFP)? Well, we imagined our Food Warden system as a consumer product.
Therefore, it is unreasonable to expect everyone to have a fluorescence microscope available at home. Pigments, however,
are recognizable by the naked eye and come in many color varieties, but a main challenge we had to accept was that
these pigments had yet to be expressed Bacillus subtilis . We decided to take the risk, and look the great results!
We identified many pigments in the Registry and choose three BioBricks that we could express independently
so we could create different colors for every single device. The parts that have been utilized as a reporter gene are:
Coral red pigment biobrick CrtEBI with RBS (BBa_K274100), created by Team Cambridge 2009, was used as one of our reporter genes in
our volatile detection device. Details concerning this part can be found in Team Cambridge 2009 page.
BBa_K274100.
Our team has coupled this biobrick part with our promoters: alsT, fnr, and sboA. The cloning was done in BBa_K823023
(plasmid backbone for B. subtilis, engineered by LMU Munich 2012), to allow color
expression in B. subtilis. We utilized a strong RBS BBa_B0034 for pigment expression in E. coli and B. subtilis.
E. coli DH5a containing fnr promoter + lycopene coding gene. The red color was expressed due to the leakiness of the fnr promoter.
B. subtilis 168 containing promoters (alsT, fnr, and sboA) coupled with the lycopene coding gene. The red color was not as
highly expressed as in E. coli. This phenotype was due to the weak promoter of B. subtilis that was used in this
construct and the RBS for E. coli that was utilized for this device construct.
AmilCP is a blue/purple chromoprotein biobrick part (BBa_K592009), created by Team Uppsala Sweden 2011, and was used as one of
the reporter genes in our volatile detection device. Details concerning this part can be found in Team Uppsala Sweden 2011 page.
BBa_K592009. AmilCP has a sequence similar to the other
coral chromoprotein, only its maximum absorption is shifted by 10 nm causing the color to appear blue instead of purple.
Our team has coupled this biobrick part with our promoters: alsT, fnr, and sboA. The cloning was done in BBa_K818000
(plasmid backbone for B. subtilis, engineered by team Groningen 2012), to allow color expression in B. subtilis.
We utilized a strong RBS BBa_B0034 for pigment expression in E. coli and B. subtilis. This reporter coding gene was strongly
expressed in E. coli due to the leakiness of the promoters. However, the expression in B. subtilis was not as
leaky as in E. coli. This phenotype in B. subtilis was due to the promoter strength and the RBS that was used in
this construct. The promoters are considered weak, therefore visible expression requires induction by volatiles produced
by the rotten meat.
E. coli DH5a containing sboA promoter + amilCP (left). Blue/purple colour was highly
expressed due to the leakiness of the promoter and a strong RBS for E. coli. However, the expression
of this part in B. subtilis was more subtle. B. subtilis containing sboA promoter + amilCP
(right) displayed faint blue colour on its colony.
AmilGFP is a yellow chromoprotein biobrick part (BBa_K592010), created by Team Uppsala Sweden 2011, and was used
as one of the reporter genes in our volatile detection device. Details concerning this part can be found in Team Uppsala
Sweden 2011 page. BBa_K592010.
This chromoprotein is part of the green chromoprotein with maximum absorbtion at 503 nm.
Our team has coupled this biobrick part with our promoters: alsT, fnr, and sboA. The cloning was done in BBa_K818000
(plasmid backbone for B. subtilis, engineered by team Groningen 2012), to allow color expression in B. subtilis.
We utilized a strong RBS BBa_B0034 for pigment expression in both E. coli and B. subtilis. This reporter coding
gene was strongly expressed in E. coli due to the leakiness of the promoters, while the expression in B. subtilis without
induction was considerably low. This low expression in B. subtilis was due to the promoter strength and the RBS that was
used in this construct. The promoters are considered weak, therefore visible expression requires induction by volatiles produced
by the rotten meat.
The volatile detection device containing sboA promoter and amilGFP has been tested in the presence of the rotten and fresh meat.
We found that under the presence of rotten meat our volatile detection device produced bright yellow color. On the other hand, when
our device that was exposed to the volatiles produced by the fresh meat it produced a small amount of yellow color. The
comparison between B. subtilis containing sboA + amilGFP to B. subtilis 168 wildtype under the presence of rotten
meat volatiles resulted in yellow pigment production by our device while no yellow pigment was produced in the wildtype strain.
The yellow color produced by our device was strong enough to be observed by the human naked eye.
E. coli DH5a containing sboA promoter + amilGFP. Yellow color was highly expressed due to the leakiness of the promoter and a strong RBS for E. coli.
Our setup for the volatile detection experiment using the sboA+amilGFP device (left). We compared the
pigment expression by our device with the wildtype strain in the presence of rotten meat and without the presence of meat.
When our device sensed volatiles produced by the rotten meat, the promoter was induced, resulting in the activation of the
amilGFP coding gene and the production of the yellow color. At the end of the experiment, the cells were harvested and spun
down to obtain a better view on the cell pellet. The cell pellet from our device that was exposed to the rotten meat volatiles
exhibited strong yellow color while the wildtype strain and the device that was not exposed to the volatiles were white (right).