Team:UNAM Genomics Mexico

From 2012.igem.org

(Difference between revisions)
 
(57 intermediate revisions not shown)
Line 1: Line 1:
{{:Template:Team:UNAM_Genomics_Mexico/webhtml| content=
{{:Template:Team:UNAM_Genomics_Mexico/webhtml| content=
-
 
+
__NOTOC__
 +
<center><h1>'''Welcome to our homepage'''</h1></center>
<br />
<br />
-
<h1>Welcome to our homepage still under construction.</h1>  
+
<table border="0"  width="900px" cellspacing="15" bgcolor="transparent" id="tablecontentbg" cellpadding="10">
 +
<tr>
 +
<td  id="rightcolumn2"><p>
 +
<h2>'''Bacillus booleanus'''</h2>  
<br />
<br />
 +
A logic gate is an idealized (or physical) device implementing a Boolean function that performs a logic operation on one or more logic inputs and produces a single logic output. A single logic gate is not a computer, many of them are necessary and they need to communicate with each other to compute stuff. In this way, a complex logic system can be created, like a computer. The architecture of gene regulatory networks is reminiscent of electronic circuits. Modular building blocks that respond in a logical way to one or several inputs are connected to perform a variety of complex tasks. Taking these two main ideas, it could be possible to create a “biological computer”. Bacillus booleanus is a project that wants to link several Boolean operations to make the beginnings of a biological computer. How does everything work? We are working on the creation of different strains of Bacillus subtilis. Each one will be able to perform a single Boolean operation, just like transistors do in an electronic computer. As we mentioned, our bacteria need to communicate to achieve trascendence, but how could this be possible? In 2011 Ben-Yehuda et. al. identified a type of bacterial communication mediated by nanotubes that bridge neighboring cells, providing a network for exchange of cellular molecules within, and between species. By using these nanotubes, our bacteria will be capable to communicate with others, creating complex networks of logic gates. Using this, it could be possible to develop a complex network of operators to regulate, for example, a synthetic metabolic pathway.
 +
</p>
 +
</td>
 +
</tr>
 +
 +
</table>
 +
 +
<table border="0"  height="150" cellspacing="15" bgcolor="transparent" id="tablecontentbg" cellpadding="10">
 +
<tr>
 +
<td  id="contentcolumn" align="center"><p>
 +
<h1>We found Nanotubes!!!</h1>
 +
[[File:UnamgenomicsNanocirculorojo.jpg|510px|link=Team:UNAM_Genomics_Mexico/Results/Nanotubes]]
 +
<b>More info here</b>
 +
</p>
 +
</td>
 +
<td  id="contentcolumn" align="center"><p>
 +
<h1>Regional Jamboree!!!</h1>
 +
[[File:Unamgenomicsbestwikihome.JPG|300px|link=Team:UNAM_Genomics_Mexico/Notebook/Photos]]<br />
<br />
<br />
 +
[[File:Unamgenomicsbogotahome.JPG|300px|link=Team:UNAM_Genomics_Mexico/Notebook/Photos]]<br />
 +
<b>Regional Jamboree LOTS of FUN!</b>
 +
</p>
 +
</td>
 +
</tr>
 +
</table>
 +
<html>
<html>
 +
<table border="0"  height="150" cellspacing="15" bgcolor="transparent" id="tablecontentbg" cellpadding="10">
 +
<tr>
 +
<td id="leftcolumn2"align="center"><a href="https://2012.igem.org/Team:UNAM_Genomics_Mexico/HumanPractices/Who_is_Mrs._Cohnnie_PhD?"><img src="https://static.igem.org/mediawiki/2012/6/60/UnamgenomicsmissLogomujer.png" alt="some_text" height="190"/><br /><br /><p><b>Meet Mrs. Lupita Cohnnie, PhD</b></p></a></td>
-
<table border="0" height="150" cellspacing="15" bgcolor="transparent" id="tablecontentbg">
+
<td  id="contentcolumn2" align="center"><a href="https://2012.igem.org/Team:UNAM_Genomics_Mexico/Notebook/Videos"><img src="https://static.igem.org/mediawiki/2012/b/b7/UnamgenomicsVideos.png" alt="some_text" height="200"/><br /><br /><p><b>Our Videos</b></p></a></td>
 +
 
 +
<td id="rightcolumn2" align="center"><a href="https://2012.igem.org/Team:UNAM_Genomics_Mexico/Modeling"><img src="https://static.igem.org/mediawiki/2012/e/e2/UnamgenomicsModelwelcome.png" alt="some_text" height="170"/><br /><br /><p><b>Our Model</b></p></a></td>
 +
</tr>
<tr>
<tr>
-
<td id="leftcolumn2">Nanotubes!!</td>
+
<td id="leftcolumn3"align="center"><a href="https://2012.igem.org/Team:UNAM_Genomics_Mexico/Results/Nanotubes"><img src="https://static.igem.org/mediawiki/2012/d/d2/Unamgenomicsnanotubes.jpg" alt="some_text" height="190"/><br /><br /><p><b>Nanotubes</b></p></a></td>
-
<td  id="contentcolumn2">The logic</td>
+
 
-
<td id="rightcolumn2">Random info</td>
+
<td  id="contentcolumn3" align="center"><a href="https://2012.igem.org/Team:UNAM_Genomics_Mexico/Project/DeeperDescription"><img src="https://static.igem.org/mediawiki/2012/c/cd/UnamgenomicsLogiv.jpg" alt="some_text" height="200"/><br /><br /><p><b>The System Logic</b></p></a></td>
 +
 
 +
<td id="rightcolumn3" align="center"><a href="https://2012.igem.org/Team:UNAM_Genomics_Mexico/HumanPractices/BiosintetizarteEN"><img src="https://static.igem.org/mediawiki/2012/f/f1/CRATELBIOSINTEtizartechico.jpg" alt="some_text" height="170"/><br /><br /><p><b>Call</b></p></a></td>
</tr>
</tr>
</table>
</table>
</html>
</html>
-
 
-
<br />
 
-
<br />
 
-
<h1>Project description</h1>
 
-
<br />
 
-
<h2>BACILLUS BOOLEANUS</h2>
 
-
<br />
 
-
A logic gate is an  idealized  or  physical  device  implementing  a  Boolean  function,  that  is,  it  performs  a  logical  operation  on  one  or  more  logic  inputs  and  produces  a  single  logic  output.  To  build  a  functionally  complete  logic  system,  transistors  can  be  used.  A  single  transistor  is  not  a  computer,  many  of  them  are  necessary  and  they  need  to  communicate  with  each  other,  in  this  way  a  complex  logic  system  can  be  created.  The  architecture  of  gene  regulatory  networks  is  reminiscent  of  electronic  circuits.  Modular  building  blocks  that  respond  in  a  logical  way  to  one  or  several  inputs  are  connected  to  perform  a  variety  of  complex  tasks.  Taking  these  two  main  ideas,  it  could  be  possible  to  create  a  “molecular  computer”.  Bacillus  Booleanus  is  a  project  that  wants  create  a  “molecular  computer”.  How  it  works?  We  are  working  on  the  creation  of  different  strains  of  Bacillus  Subtilis,  each  one  will  be  able  to  perform  a  single  Boolean  operation  just  like  a  transistor.  As  we  mentioned  our  transistors  need  to  communicate,  but  how  could  this  be  possible?  In  2011  Ben-­-Yehuda  et  al  identified  a  type  of  bacterial  communication  mediated  by  nanotubes  that  bridge  neighboring  cells,  providing  a  network  for  exchange  of  cellular  molecules  within  and  between  species.  By  using  these  nanotubes  our  bacterium  will  be  capable  to  communicate  with  others  so  that  create  complex  networks  of  logic  gates.  Using  this  it  could  be  possible  to  develop  a  complex  network  of  "transistors"  to  create,  for  example,  a  synthetic  metabolic  pathway.
 
-
 
}}
}}

Latest revision as of 02:51, 27 October 2012


UNAM-Genomics_Mexico

Welcome to our homepage


Bacillus booleanus


A logic gate is an idealized (or physical) device implementing a Boolean function that performs a logic operation on one or more logic inputs and produces a single logic output. A single logic gate is not a computer, many of them are necessary and they need to communicate with each other to compute stuff. In this way, a complex logic system can be created, like a computer. The architecture of gene regulatory networks is reminiscent of electronic circuits. Modular building blocks that respond in a logical way to one or several inputs are connected to perform a variety of complex tasks. Taking these two main ideas, it could be possible to create a “biological computer”. Bacillus booleanus is a project that wants to link several Boolean operations to make the beginnings of a biological computer. How does everything work? We are working on the creation of different strains of Bacillus subtilis. Each one will be able to perform a single Boolean operation, just like transistors do in an electronic computer. As we mentioned, our bacteria need to communicate to achieve trascendence, but how could this be possible? In 2011 Ben-Yehuda et. al. identified a type of bacterial communication mediated by nanotubes that bridge neighboring cells, providing a network for exchange of cellular molecules within, and between species. By using these nanotubes, our bacteria will be capable to communicate with others, creating complex networks of logic gates. Using this, it could be possible to develop a complex network of operators to regulate, for example, a synthetic metabolic pathway.

We found Nanotubes!!!

UnamgenomicsNanocirculorojo.jpg More info here

Regional Jamboree!!!

Unamgenomicsbestwikihome.JPG

Unamgenomicsbogotahome.JPG
Regional Jamboree LOTS of FUN!

some_text

Meet Mrs. Lupita Cohnnie, PhD

some_text

Our Videos

some_text

Our Model

some_text

Nanotubes

some_text

The System Logic

some_text

Call