|
|
(16 intermediate revisions not shown) |
Line 221: |
Line 221: |
| <div id="header"> | | <div id="header"> |
| <!-- wrapper-header --> | | <!-- wrapper-header --> |
- | <div class="wrapper"> <a href="http://luiszuno.com/themes/nova/index.html"><img id="logo" src="https://static.igem.org/mediawiki/2012/5/5d/Logo_64px.png" alt="Nova"></a> | + | <div class="wrapper"> <a href="https://2012.igem.org/Team:Fudan_Lux"><img id="logo" src="https://static.igem.org/mediawiki/2012/5/5d/Logo_64px.png" alt="Nova"></a> |
| <!-- search --> | | <!-- search --> |
| <div class="top-search"> | | <div class="top-search"> |
Line 250: |
Line 250: |
| <li class="current-menu-item"><a href="https://2012.igem.org/wiki/index.php?title=Team:Fudan_Lux/project_introduction">Project<span class="subheader">Cool</span></a> | | <li class="current-menu-item"><a href="https://2012.igem.org/wiki/index.php?title=Team:Fudan_Lux/project_introduction">Project<span class="subheader">Cool</span></a> |
| <ul style="display: none; visibility: hidden; "> | | <ul style="display: none; visibility: hidden; "> |
- | <li><a href="https://2012.igem.org/wiki/index.php?title=Team:Fudan_Lux/project_introduction">Introduction</a></li> | + | <li><a href="https://2012.igem.org/wiki/index.php?title=Team:Fudan_Lux/project_introduction">Overview</a></li> |
| <li><a href="https://2012.igem.org/wiki/index.php?title=Team:Fudan_Lux/biowave">Project Biowave</a></li> | | <li><a href="https://2012.igem.org/wiki/index.php?title=Team:Fudan_Lux/biowave">Project Biowave</a></li> |
| <li><a href="https://2012.igem.org/wiki/index.php?title=Team:Fudan_Lux/nanotube">Project Bacto-Trafficking</a></li> | | <li><a href="https://2012.igem.org/wiki/index.php?title=Team:Fudan_Lux/nanotube">Project Bacto-Trafficking</a></li> |
Line 312: |
Line 312: |
| <div> | | <div> |
| <p class="dropcap">One of the most interesting and complex types of group behaviors in animals is that several organisms act simultaneously and repetitively at regular intervals of time.<sup>1</sup> Ordinarily, this kind of behavior is called “<strong>synchronous</strong>”. It has been observed in Thailand that male Pteroptyx malaccae fireflies, congregated in trees, flash in rhythmic synchrony with a period of about 560 ± 6 msec (at 28°C). Males of a special Chinese species of firefly called <i><b>Qiongyuying</b></i> flash synchronously during mating season. Besides, we also observed that bees crawling in the same small area display a synchrony of wings fluttering in order to scare off intruders,and we filmed a video clip to demonstrate this phenomenon.</p> | | <p class="dropcap">One of the most interesting and complex types of group behaviors in animals is that several organisms act simultaneously and repetitively at regular intervals of time.<sup>1</sup> Ordinarily, this kind of behavior is called “<strong>synchronous</strong>”. It has been observed in Thailand that male Pteroptyx malaccae fireflies, congregated in trees, flash in rhythmic synchrony with a period of about 560 ± 6 msec (at 28°C). Males of a special Chinese species of firefly called <i><b>Qiongyuying</b></i> flash synchronously during mating season. Besides, we also observed that bees crawling in the same small area display a synchrony of wings fluttering in order to scare off intruders,and we filmed a video clip to demonstrate this phenomenon.</p> |
- | <div><embed src="http://www.tudou.com/v/VY8BWCd7FSA/&resourceId=0_05_05_99&bid=05/v.swf" type="application/x-shockwave-flash" allowscriptaccess="always" allowfullscreen="true" wmode="opaque" width="480" height="400"></div> | + | <div><embed src="http://www.tudou.com/v/VY8BWCd7FSA/&resourceId=0_05_05_99&bid=05/v.swf" type="application/x-shockwave-flash" allowscriptaccess="always" allowfullscreen="true" wmode="opaque" width="480" height="400"><p>Here is a video.If you see this,you may need to refresh this page.</p></embed></div> |
| <p >Moreover, synchrony has been described in a range of mammal groups, including <i><b>odontocete cetaceans</b></i> (a kind of toothed whale).<sup>2</sup> The <i><b>odontocete cetaceans</b></i> behave synchronously when they breathe on the surface of water.</p> | | <p >Moreover, synchrony has been described in a range of mammal groups, including <i><b>odontocete cetaceans</b></i> (a kind of toothed whale).<sup>2</sup> The <i><b>odontocete cetaceans</b></i> behave synchronously when they breathe on the surface of water.</p> |
| </div></div><!--end post--> | | </div></div><!--end post--> |
Line 348: |
Line 348: |
| <div class="post"> | | <div class="post"> |
| <h1><a name="Introduction">Introduction</a></h1> | | <h1><a name="Introduction">Introduction</a></h1> |
- | <p class="dropcap">Recently, there has been increasing interest in visible light controlled system. Optogenetics, a seven-year-old field branching out from molecular biology and neuroscience, is leading the trend of creating novel synthesized proteins as “tools” </p><img src="https://static.igem.org/mediawiki/2012/a/aa/Peking2012_Optogenetics.jpg" style="width:50%;float:right" class="myimg"><p>helping people understand the brain mechanism. These “opsins” with light-activated domain borrowed from microbes or plants, were transferred into model animal organisms. These controllers are acting in the center part of light system. Unlike the drug treatment, light can be delivered by lasers with extremely high spatial precision; therefore, one can manipulate only target cells. </p><p>Our Biowave project is more than performing <span class="pullquote-right"> “Optogenetics can solve controversies that have been going on for many, many years.”</span>light control. By establishing the light depending feedback system within the cell we have realized a light communication system. This is the very first time that putting the intracellular and intercellular light communication in the biological system. Using the fundamental gene circuit and brand new parts we created, each cell becomes a communication node. </p><img src="https://static.igem.org/mediawiki/2012/1/1a/Bwave2.jpg" style="float:left;margin-right:10px"><p>The first Biowave circuit we have created is the Negative Feedback Biowave. The circuit comprising light sensor and light generator established the negative feedback between them. The properties of time delay, caused by gene expression or the accumulation of the element’s concentration, and negative feedback could form an oscillation of light output within a single cell or the neighbouring cells. By placing the bacteria on a Petri dish and letting them evenly distributed, each cell could sense the light of others equally. With the certain condition and observation analysis, the whole dish could form a detectable synchronized oscillation. In a macroscopic view, this kind of synchronization could be distracted by the attenuation of light. So we could expect a wave like pattern on this level.</p><p>The Positive Feedback Biowave is another attempt for the intracellular and intercellular light communication. Thus the positive feedback under this situation makes the system a bistable circuit; each cell can remain in either a light state or a dark state. But the light irradiation across the colony makes things different. The bacteria would form a static strip or other bistable system caused patterns within or beyond our expected.</p> | + | <p class="dropcap">Recently, there has been increasing interest in visible light controlled system. Optogenetics, a seven-year-old field branching out from molecular biology and neuroscience, is leading the trend of creating novel synthesized proteins as “tools” </p><img src="https://static.igem.org/mediawiki/2012/1/15/Optogenetics-mouse.png" style="width:50%;float:right" class="myimg"><p>helping people understand the brain mechanism. These “opsins” with light-activated domain borrowed from microbes or plants, were transferred into model animal organisms. These controllers are acting in the central part of the light system. Unlike the drug treatment, light can be delivered by lasers with extremely high spatial precision; therefore, one can manipulate only target cells. </p><p>Our Biowave project is more than performing <span class="pullquote-left"> “Optogenetics can solve controversies that have been going on for many, many years.”</span>light control. By establishing the light depending feedback system within the cell we have realized a light communication system. This is the very first time that putting the intracellular and intercellular light communication together in the biological system. Using the fundamental gene circuit and brand new parts we created, each cell becomes a communication node. </p><img src="https://static.igem.org/mediawiki/2012/1/1a/Bwave2.jpg" style="float:left;margin-right:10px"><p>The first Biowave circuit we have created is the Negative Feedback Biowave. The circuit comprising light sensor and light generator established the negative feedback between them. The properties of time delay, caused by gene expression or the accumulation of the element’s concentration, and negative feedback could form an oscillation of light output within a single cell or the neighbouring cells. By placing the bacteria on a Petri dish and letting them evenly distributed, each cell could sense the light of others equally. With the certain condition and observation analysis, the whole dish could form a detectable synchronized oscillation. In a macroscopic view, this kind of synchronization could be distracted by the attenuation of light. So we could expect a wave like pattern on this level.</p><p>The Positive Feedback Biowave is another attempt for the intracellular and intercellular light communication. Thus the positive feedback under this situation makes the system a bistable circuit; each cell can remain in either a light state or a dark state. But the light irradiation across the colony makes things different. The bacteria would form a static strip or other bistable system caused patterns within or beyond our expected.</p> |
- | <table border="0" cellpadding="0" cellspacing="0" width="651" style="border-collapse: | + | <table border="0" cellpadding="0" cellspacing="0" width="651"> |
- | collapse;table-layout:fixed;width:651pt">
| + | |
| <colgroup><col width="100" style="mso-width-source:userset;mso-width-alt:4266;width:100pt"> | | <colgroup><col width="100" style="mso-width-source:userset;mso-width-alt:4266;width:100pt"> |
| <col class="xl65" width="208" style="mso-width-source:userset;mso-width-alt:8874; | | <col class="xl65" width="208" style="mso-width-source:userset;mso-width-alt:8874; |
Line 429: |
Line 428: |
| <p> <h6>Establish feedback system</h6><br> | | <p> <h6>Establish feedback system</h6><br> |
| Feedback exists between two parts when each affects the others. In our system, these two parts are the light sensor and the concentration of the light generator protein. By involving the light sensor in the loop, we can establish the feedback.</p><br> | | Feedback exists between two parts when each affects the others. In our system, these two parts are the light sensor and the concentration of the light generator protein. By involving the light sensor in the loop, we can establish the feedback.</p><br> |
| + | <img src="https://static.igem.org/mediawiki/igem.org/4/49/PycgZ_negative_feedback_system.png" class="myimg"> |
| + | <img src="https://static.igem.org/mediawiki/igem.org/f/fc/PycgZ_positive_feedback_system.png" class="myimg"> |
| <p><h6>Light generator</h6><br> | | <p><h6>Light generator</h6><br> |
| <strong>Approach</strong><br>Next issue we placed our focus on the properties of the candidate parts. At the beginning we laid eyes on the luciferin illumination system. But the engineering bacteria we were using do not have the luciferin producing enzyme system or the luciferin cycle. Fortunately the 2010iGEM Cambridge has successfully deliver this cycling system into the E.coli. But the wave length does <img src="https://static.igem.org/mediawiki/2012/b/b9/Lux_pathway.png" style="width:45%;margin:15px;float:left">not fit the light sensor which we will discuss later. So we picked another well-known bio illuminator, the Lux operon. It is also presented by 2010 Cambridge. </p><br><br> | | <strong>Approach</strong><br>Next issue we placed our focus on the properties of the candidate parts. At the beginning we laid eyes on the luciferin illumination system. But the engineering bacteria we were using do not have the luciferin producing enzyme system or the luciferin cycle. Fortunately the 2010iGEM Cambridge has successfully deliver this cycling system into the E.coli. But the wave length does <img src="https://static.igem.org/mediawiki/2012/b/b9/Lux_pathway.png" style="width:45%;margin:15px;float:left">not fit the light sensor which we will discuss later. So we picked another well-known bio illuminator, the Lux operon. It is also presented by 2010 Cambridge. </p><br><br> |
Line 461: |
Line 462: |
| | | |
| </p> | | </p> |
- | <p><strong>tetR repressor</strong>TetR act as a repressor is operating by binding to the specific DNA sequence, which is a palindromic sequence. The whole binding structure is classified as the HTH motif containing a | + | <p><strong>tetR repressor</strong></p>TetR act as a repressor is operating by binding to the specific DNA sequence, which is a palindromic sequence. The whole binding structure is classified as the HTH motif containing a |
| <img src="https://static.igem.org/mediawiki/2012/2/2e/TetR_lux.jpg" style="width:90%;align-ment:middle"> | | <img src="https://static.igem.org/mediawiki/2012/2/2e/TetR_lux.jpg" style="width:90%;align-ment:middle"> |
| | | |
Line 488: |
Line 489: |
| | | |
| </div> | | </div> |
- | <div> | + | <br> |
| + | <div> |
| + | <img src="https://static.igem.org/mediawiki/igem.org/f/f6/Light_sensor_negative_feedback_system.png" class="myimg"></p> |
| + | <img src="https://static.igem.org/mediawiki/igem.org/c/c7/Light_sensor_testing_system.png" class="myimg"></p> |
| + | </div> |
| + | <br> |
| + | <div> |
| + | <h1><a name="Spectrum Analysis">Spectrum Analysis</a></h1> |
| + | <p>Thus the synchronized oscillation is spatiotemporal distributed; the observation and analysis should be space-time continuum. In order to realize the demonstration of synchronization, we have developed an analysis methodology combining the time-lapse photography and the frequency spectrum analysis.</p> |
| + | <p><strong>Time-lapse photography</strong> |
| + | </p> |
| + | <p>TOne crucial requirement for the synchronization is the evenly distribution of the bacteria. That means our synchronized oscillation should be performed on a Petri dish, the observation and analysis should adjust to the dish incubation. And there should be absolutely no light disturbance from the environment.</p> |
| + | <p>We have built a wooden camera obscura where the bacteria are cultivated. Digital SLR on the top take photos of luminescence every five minutes. Such a process is considered as the Time-lapse photography. This method allows us to analysis the synchronization spatiotemporally and demonstrates it vividly. </p> |
| + | <p><strong>Frequency spectrum analysis</strong> |
| + | </p> |
| + | <p>Time-lapse photography provides a series of images which listed according to the time order.<img src="https://static.igem.org/mediawiki/2012/1/11/Spectrum_analysis_Mask.jpg" style="width:50%;margin:15px;float:right" class="myimg"/> To ensure the synchronized oscillation is detectable and reasonable, we choose more than 2000 sampling points on the dish image, and extracted time serials data of each sampling points, and then shown the distribution of frequency of all sampling points by histogram. |
| + | </p> |
| + | <p>By this processing, we could easily tell which biowave system is actually preforming a synchronized oscillation. If the histogram shows a concentrating distribution, then we could say the system has make the oscillation synchronized; if the distribution disperse, we could tell that the oscillation of each cell is independent, there is no communication between cells. |
| + | </p> |
| + | </div> |
| + | <br> |
| + | <div> |
| <h1><a name="Application">Application</a></h1> | | <h1><a name="Application">Application</a></h1> |
- | <p>Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Vestibulum tortor quam, feugiat vitae, ultricies eget, tempor sit amet, ante. Donec eu libero sit amet quam egestas semper. Aenean ultricies mi vitae est. Mauris placerat eleifend leo. Quisque sit amet est et sapien ullamcorper pharetra. Vestibulum erat wisi, condimentum sed, commodo vitae, ornare sit amet, wisi. Aenean fermentum, elit eget tincidunt condimentum, eros ipsum rutrum orci, sagittis tempus lacus enim ac dui. Donec non enim in turpis pulvinar facilisis. Ut felis. Praesent dapibus, neque id cursus faucibus, tortor neque egestas augue, eu vulputate magna eros eu erat. Aliquam erat volutpat. Nam dui mi, tincidunt quis, accumsan porttitor, facilisis luctus, metus</p> | + | <p>Since every cell has its own oscillation, tumor cells must be no exception. However, the spectra of different cells distributes distinctively. We are concerned with the utilization of this oscillator in cancer therapy. Taking energy transformation into consideration, we believe that the formation of the oscillator can initiate changes that should not be ignored to the surroundings. We are curious about it, whether the parameter of the oscillator can be adjusted to a certain number, under which the Escherichia coli or other attenuated strains can inhibit the growth of tumor cells without doing harm to normal cells.</p> |
- | <p>Pellentesque habitant morbi tristique senectus et netus et malesuada fames, Pellentesque habitant morbi tristique senectus et netus et malesuada fames Pellentesque habitant morbi tristique senectus et netus et malesuada fames.</p> | + | <br> |
| + | <p>The oscillator can be used as a tool for the exploration of the evolution of Optogenetics. |
| + | We propose to culture the E. coli strain with the transformed oscillator respectively on each of the three culture media: full nutrition, basic nutrition and lack of different nutrients. By comparing the ratio of plasmid loss and other indices of strain under natural evolution and strains under stressful evolution, we might have chances to find out the reasons that cells seldom use light, which has many advantages over chemicals in our view, as a signal. |
| + | </p> |
| </div> | | </div> |
| + | <div><h1><a name="References">References:</a></h1> |
| + | <p>Julien Herrou* and Sean Crosson Function, structure and mechanism of bacterial photosensory LOV proteinsNature Reviews Microbiology 9, 713-723 (October 2011) </p> |
| + | <p>Devin Strickland, Keith Moffat, and Tobin R. Sosnick* Light-activated DNA binding in a designed |
| + | allosteric protein PNAS August 5, 2008 vol. 105 no. 31 10709-10714</p> |
| + | <p>Juan L. Ramos, Manuel Martínez-Bueno The TetR Family of Transcriptional Repressors Microbiol Mol Biol Rev. 2005 June; 69(2): 326–356.</p> |
| + | <p>Abigail I. Nasha,1, Reginald McNultyb,1, Mary Elizabeth Shillitob, Trevor E. Swartzc,2, Roberto A. Bogomolnic, Hartmut Lueckeb,3, and Kevin H. Gardnera,3 Structural basis of photosensitivity in a bacterial light-oxygen-voltage/helix-turn-helix (LOV-HTH) DNA-binding protein PNAS June 7, 2011 vol. 108 no. 23 9449-9454</p> |
| + | </div> |
| <!-- ENDS shadow --> | | <!-- ENDS shadow --> |
| | | |
Line 511: |
Line 543: |
| <li class="cat-item"><a href="#model" title="View all posts">Design Process</a></li> | | <li class="cat-item"><a href="#model" title="View all posts">Design Process</a></li> |
| <li class="cat-item"><a href="#lightsensor" title="View all posts">Sensor Protein Design</a></li> | | <li class="cat-item"><a href="#lightsensor" title="View all posts">Sensor Protein Design</a></li> |
- | <li class="cat-item"><a href="#Application" title="View all posts">Spectrum Analysis</a></li> | + | <li class="cat-item"><a href="#Spectrum Analysis" title="View all posts">Spectrum Analysis</a></li> |
| + | <li class="cat-item"><a href="https://2012.igem.org/wiki/index.php?title=Team:Fudan_Lux/result#11" title="View all posts">Results</a></li> |
| + | <li class="cat-item"><a href="#Application" title="View all posts">Application</a></li> |
| </ul> | | </ul> |
| </li> | | </li> |