Team:Fudan Lux/Modeling

From 2012.igem.org

(Difference between revisions)
 
(14 intermediate revisions not shown)
Line 128: Line 128:
<!-- wrapper-header -->
<!-- wrapper-header -->
<div class="wrapper">
<div class="wrapper">
-
<a href="http://luiszuno.com/themes/nova/index.html"><img id="logo" src="https://static.igem.org/mediawiki/2012/5/5d/Logo_64px.png" alt="Nova"></a>
+
<a href="https://2012.igem.org/Team:Fudan_Lux"><img id="logo" src="https://static.igem.org/mediawiki/2012/5/5d/Logo_64px.png" alt="Nova"></a>
<!-- search -->
<!-- search -->
<div class="top-search">
<div class="top-search">
Line 161: Line 161:
</li>
</li>
<li><a href="https://2012.igem.org/wiki/index.php?title=Team:Fudan_Lux/project_introduction">Project<span class="subheader">Cool</span></a><ul style="display: none; visibility: hidden; ">
<li><a href="https://2012.igem.org/wiki/index.php?title=Team:Fudan_Lux/project_introduction">Project<span class="subheader">Cool</span></a><ul style="display: none; visibility: hidden; ">
-
<li><a href="https://2012.igem.org/wiki/index.php?title=Team:Fudan_Lux/project_introduction">Introduction</a></li>
+
<li><a href="https://2012.igem.org/wiki/index.php?title=Team:Fudan_Lux/project_introduction">Overview</a></li>
<li><a href="https://2012.igem.org/wiki/index.php?title=Team:Fudan_Lux/biowave">Project Biowave</a></li>
<li><a href="https://2012.igem.org/wiki/index.php?title=Team:Fudan_Lux/biowave">Project Biowave</a></li>
Line 211: Line 211:
<!-- ENDS title -->
<!-- ENDS title -->
<div style="margin-left: 50px;margin-right: 50px;">
<div style="margin-left: 50px;margin-right: 50px;">
-
<p>The model has two elements: the light sensor, which exists as a dimer, and Lux protein. The light sensor dimer has the capability to bind to downstream promoter, as above mentioned which is “Tet on” promoter, and regulate the expression of Lux. Once the dimer binds to the promoter, the transcription rate of the Lux is decreased by a factor of 100. The parameters of the system are listed in Table 1. We built the corresponding deterministic mathematical model for this system as follows:</p>
+
<h1>Mathematical Model</h1>
 +
<p>The model has three elements: the light sensor, which exists as a dimer, the Lux protein and the light intensity. The light sensor dimer not only be able to response to changing of light intensity, but also has the capability to bind to downstream “Tet on” promoter, and regulate the expression of Lux family. Once the dimer binds to the promoter, the transcription rate of the Lux is decreased more than 1000 times. The parameters of the system are listed in Table 1.</p>
 +
<p>We built the corresponding Langevin mathematical model for this system as follows:</p>
<div/>
<div/>
<div align="center">
<div align="center">
Line 217: Line 219:
</div>
</div>
<p>equation (1), the variables Ls, Ls1, Lux refer to the concentration of the light sensor, the active light sensor and Lux protein in the system, respectively. The variables Z , Z1 and Z2 denote the total light strength, intrinsic light strength and external light strength. The initial values of these variables are set to zero. N is the copy number of plasmid, K1 and K2 are expression capability of light sensor gene and Lux, respectively, K3 is the parameter describe the ability of give out light by Lux, K4 is attenuation rate of light propagation in colonial, K5 and K6 are parameters of logistic eqution, d is the degradation rate of light sensor and Lux protein, r means the dilution rate caused by cell volume grow. δ denotes the noise of gene expression. In order to calculate the total extern light strength, we used multiple integral to describe the contribution of whole colonial to this unit. Multiple logistic method was also be used to describe concentration of the active light sensor change by light sensor and total light strength.</p>
<p>equation (1), the variables Ls, Ls1, Lux refer to the concentration of the light sensor, the active light sensor and Lux protein in the system, respectively. The variables Z , Z1 and Z2 denote the total light strength, intrinsic light strength and external light strength. The initial values of these variables are set to zero. N is the copy number of plasmid, K1 and K2 are expression capability of light sensor gene and Lux, respectively, K3 is the parameter describe the ability of give out light by Lux, K4 is attenuation rate of light propagation in colonial, K5 and K6 are parameters of logistic eqution, d is the degradation rate of light sensor and Lux protein, r means the dilution rate caused by cell volume grow. δ denotes the noise of gene expression. In order to calculate the total extern light strength, we used multiple integral to describe the contribution of whole colonial to this unit. Multiple logistic method was also be used to describe concentration of the active light sensor change by light sensor and total light strength.</p>
-
<div id="name" align="center">
+
<h1>Simulation</h1>
 +
<br></br>
 +
<p>Based on the above model, we stimulated the stochastic dynamics of this light communication system by <a href=http://ccsb.fudan.edu.cn/genecircuits> <I>GeneCircuits tool.</I></a>
 +
<div id="name" align="center">
 +
 
<table border="1">
<table border="1">
<tr>
<tr>
Line 260: Line 266:
</table>
</table>
</div>
</div>
 +
<div><div id="headline">
 +
 +
 +
<div style="align:center">
 +
<img src="https://static.igem.org/mediawiki/2012/4/49/Lux_Sim.jpg">
 +
</div>
 +
 +
 +
</div></div>
<div style="margin-left: 50px;margin-right: 50px;">
<div style="margin-left: 50px;margin-right: 50px;">
<h1>Spectrum analysis</h1>
<h1>Spectrum analysis</h1>
-
<p>Randomly, we chased more than 20000 sampling points, and extracted time serials data of each sampling points from our time lapse images. Use customized matlab code, we analyzed the spectrum of each sampling point, and then shown the distribution of frequency of all sampling points by histogram. </p></div>
+
<p>Randomly, we chased more than 2000 sampling points, and extracted time serials data of each sampling points from our time lapse images. Use customized matlab code, we analyzed the spectrum of each sampling point, and then shown the distribution of frequency of all sampling points by histogram. </p></div>
</div>
</div>
<!-- ENDS content -->
<!-- ENDS content -->
Line 271: Line 286:
<!-- ENDS MAIN -->
<!-- ENDS MAIN -->
-
<!-- Twitter -->
+
<!-- Twitter -->
<div id="twitter">
<div id="twitter">
-
<div class="wrapper">
+
-
<a href="#" id="prev-tweet"></a>
+
-
<a href="#" id="next-tweet"></a>
+
-
<img id="bird" src="img/bird.png" alt="Tweets" />
+
-
<div id="tweets">
+
-
<ul class="tweet_list"></ul>
+
-
</div>
+
-
</div>
+
</div>
</div>
<!-- ENDS Twitter -->
<!-- ENDS Twitter -->
Line 291: Line 299:
<!-- footer-cols -->
<!-- footer-cols -->
<ul id="footer-cols">
<ul id="footer-cols">
-
<li class="col">
+
-
<h6>Pages</h6>
+
-
<ul>
+
-
<li class="page_item"><a href="index.html">Home</a></li>
+
-
<li class="page_item"><a href="features.html">Features</a></li>
+
-
<li class="page_item"><a href="blog.html">Blog</a></li>
+
-
<li class="page_item"><a href="portfolio.html">Portfolio</a></li>
+
-
<li class="page_item"><a href="gallery.html">Gallery</a></li>
+
-
<li class="page_item"><a href="contact.html">Contact</a></li>
+
-
</ul>
+
-
</li>
+
<li class="col">
<li class="col">
-
<h6>Categories</h6>
+
<h6>About the Team</h6>
-
<ul>
+
He he he he!
-
<li><a href="#">Webdesign projects senectus</a></li>
+
-
<li><a href="#/">Wordpress projects senectus</a></li>
+
-
<li><a href="#">Vestibulum tortor quam</a></li>
+
-
<li><a href="#">Code projects amet quam egestas</a></li>
+
-
<li><a href="#">Web design projects senectus</a></li>
+
-
<li><a href="#/">Marketplace projects</a></li>
+
-
<li><a href="#">Writting projects senectus</a></li>
+
-
<li><a href="#">Drawings projects fames Aenean</a></li>
+
-
<li><a href="#/">Wordpress projects Aenean ultricies</a></li>
+
-
</ul>
+
-
</li>
+
-
<li class="col">
+
-
<h6>About the theme</h6>
+
-
Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Vestibulum tortor quam, feugiat vitae, ultricies eget, tempor sit amet, ante. Donec eu libero sit amet quam egestas semper. Aenean ultricies mi vitae est. Mauris placerat eleifend leo. Cursus faucibus, tortor neque egestas augue, eu vulputate magna eros.
+
</li>
</li>
Line 334: Line 319:
<!-- wrapper-bottom -->
<!-- wrapper-bottom -->
<div class="wrapper">
<div class="wrapper">
-
<div id="bottom-text">2011 Nova all rights reserved. <a href="http://www.luiszuno.com"> Luiszuno.com</a> </div>
+
<div id="bottom-text">All rights reserved. Tempalate Edit by Fudan-lux team <a href="http://www.luiszuno.com">Powered By Luiszuno.com</a> </div>
<!-- Social -->
<!-- Social -->
-
<ul class="social ">
+
-
<li><a href="http://www.facebook.com" class="poshytip  facebook" title="Become a fan"></a></li>
+
-
<li><a href="http://www.twitter.com" class="poshytip twitter" title="Follow our tweets"></a></li>
+
-
<li><a href="http://www.dribbble.com" class="poshytip dribbble" title="View our work"></a></li>
+
-
<li><a href="http://www.addthis.com" class="poshytip addthis" title="Tell everybody"></a></li>
+
-
<li><a href="http://www.vimeo.com" class="poshytip vimeo" title="View our videos"></a></li>
+
-
<li><a href="http://www.youtube.com" class="poshytip youtube" title="View our videos"></a></li>
+
-
</ul>
+
<!-- ENDS Social -->
<!-- ENDS Social -->
-
<div id="to-top" class="poshytip" title="To top"></div>
+
<div id="to-top
-
</div>
+
-
<!-- ENDS wrapper-bottom -->
+
-
</div>
+
-
<!-- ENDS Bottom -->
+
-
+
-
</body>
+
-
</html>
+

Latest revision as of 02:29, 27 September 2012

NOVA

Modeling Structure and Simulation

Mathematical Model

The model has three elements: the light sensor, which exists as a dimer, the Lux protein and the light intensity. The light sensor dimer not only be able to response to changing of light intensity, but also has the capability to bind to downstream “Tet on” promoter, and regulate the expression of Lux family. Once the dimer binds to the promoter, the transcription rate of the Lux is decreased more than 1000 times. The parameters of the system are listed in Table 1.

We built the corresponding Langevin mathematical model for this system as follows:

equation (1), the variables Ls, Ls1, Lux refer to the concentration of the light sensor, the active light sensor and Lux protein in the system, respectively. The variables Z , Z1 and Z2 denote the total light strength, intrinsic light strength and external light strength. The initial values of these variables are set to zero. N is the copy number of plasmid, K1 and K2 are expression capability of light sensor gene and Lux, respectively, K3 is the parameter describe the ability of give out light by Lux, K4 is attenuation rate of light propagation in colonial, K5 and K6 are parameters of logistic eqution, d is the degradation rate of light sensor and Lux protein, r means the dilution rate caused by cell volume grow. δ denotes the noise of gene expression. In order to calculate the total extern light strength, we used multiple integral to describe the contribution of whole colonial to this unit. Multiple logistic method was also be used to describe concentration of the active light sensor change by light sensor and total light strength.

Simulation



Based on the above model, we stimulated the stochastic dynamics of this light communication system by GeneCircuits tool.

Paramemter Value
N row 2, cell 1
K1 0.01 umol/min
K2 0.01umol/min
K3 8.4
K4 0.05
K5 20
K6 20
d2 0
d1 0
r 0.02

Spectrum analysis

Randomly, we chased more than 2000 sampling points, and extracted time serials data of each sampling points from our time lapse images. Use customized matlab code, we analyzed the spectrum of each sampling point, and then shown the distribution of frequency of all sampling points by histogram.

All rights reserved. Tempalate Edit by Fudan-lux team Powered By Luiszuno.com