Team:Bielefeld-Germany/Project/Background/Laccase

From 2012.igem.org

(Difference between revisions)
Line 8: Line 8:
<p><align=justify><i>
<p><align=justify><i>
-
"Laccases have received much attention from researchers in last decades due to their ability to oxidise both phenolic and nonphenolic lignin related compounds as well as highly recalcitrant environmental pollutants, which makes them very useful for their application to several biotechnological processes. Such applications include the detoxification of industrial effluents, mostly from the paper and pulp, textile and petrochemical industries, use as a tool for medical diagnostics and as a bioremediation agent to clean up herbicides, pesticides and certain explosives in soil. Laccases are also used as cleaning agents for certain water purification systems, as catalysts for the manufacture of anti-cancer drugs and even as ingredients in cosmetics. In addition, their capacity to remove xenobiotic substances and produce polymeric products makes them a useful tool for bioremediation purposes."
+
"Laccases have received much attention from researchers in last decades due to their ability to oxidise both phenolic and nonphenolic lignin related compounds as well as highly recalcitrant environmental pollutants, which makes them very useful for their application to several biotechnological processes. Such applications include the detoxification of industrial effluents, mostly from the paper and pulp, textile and petrochemical industries, use as a tool for medical diagnostics and as a bioremediation agent to clean up herbicides, pesticides and certain explosives in soil. Laccases are also used as cleaning agents for certain water purification systems, as catalysts for the manufacture of anti-cancer drugs and even as ingredients in cosmetics. In addition, their capacity to remove xenobiotic substances and produce polymeric products makes them a useful tool for bioremediation purposes."[1]
</i>
</i>
<br>
<br>
<br>
<br>
-
Susana Rodríguez Couto & José Luis Toca Herrera;<i>Industrial and biotechnological applications of laccases: A review</i>;  2006; Biotechnology Advances 24 500–513
+
[1] Susana Rodríguez Couto & José Luis Toca Herrera;<i>Industrial and biotechnological applications of laccases: A review</i>;  2006; Biotechnology Advances 24 500–513
</font></p>
</font></p>
</html>
</html>

Revision as of 14:55, 1 August 2012

May we introduce our dear partner: Laccase

"Laccases have received much attention from researchers in last decades due to their ability to oxidise both phenolic and nonphenolic lignin related compounds as well as highly recalcitrant environmental pollutants, which makes them very useful for their application to several biotechnological processes. Such applications include the detoxification of industrial effluents, mostly from the paper and pulp, textile and petrochemical industries, use as a tool for medical diagnostics and as a bioremediation agent to clean up herbicides, pesticides and certain explosives in soil. Laccases are also used as cleaning agents for certain water purification systems, as catalysts for the manufacture of anti-cancer drugs and even as ingredients in cosmetics. In addition, their capacity to remove xenobiotic substances and produce polymeric products makes them a useful tool for bioremediation purposes."[1]

[1] Susana Rodríguez Couto & José Luis Toca Herrera;Industrial and biotechnological applications of laccases: A review; 2006; Biotechnology Advances 24 500–513