Team:Bielefeld-Germany/Labjournal/week1

From 2012.igem.org

(Difference between revisions)
(Week 1 (04/30 - 05/06/12))
(Labjournal)
Line 22: Line 22:
[https://2012.igem.org/Team:Bielefeld-Germany/Labjournal/week18 Week18]
[https://2012.igem.org/Team:Bielefeld-Germany/Labjournal/week18 Week18]
[https://2012.igem.org/Team:Bielefeld-Germany/Labjournal/week19 Week19]
[https://2012.igem.org/Team:Bielefeld-Germany/Labjournal/week19 Week19]
 +
[https://2012.igem.org/Team:Bielefeld-Germany/Labjournal/week20 Week20]

Revision as of 12:44, 11 September 2012

Contents

Labjournal

Week1 Week2 Week3 Week4 Week5 Week6 Week7 Week8 Week9 Week10 Week11 Week12 Week13 Week14 Week15 Week16 Week17 Week18 Week19 Week20


Week 1 (04/30 - 05/06/12)

  • Start of our WET LAB time.
  • Generating new competent E.coli KRX cells.
  • Cultiviation of Xanthomonas campestris B100 and E. coli BL21(DE3). The bacterial strains we got from a working group at our University. After cultivation we isolated the genomic DNA. The DNA was needed as template for PCRs to purify the wanted laccase ORFs.

weekly seminar:

  • Do we want to order strains of Trametes versicolor and Trametes villosa?
  • Gathering information about signal sequences in yeast
  • Decision to create a database, so that we can easily number and inscribe our lab results
  • Decision to arrange a summer school for pupils in their last year before the final exams
  • Discussion about how to meet a member of the german Bundestag (the german parliament)

Monday April 30th

  • Team Student Academy: We got the chance to organize one part of the first school academy “synthetic biology/ biotechnology” at the CeBiTec of University Bielefeld by arranging experiments for the pupils and by presenting us and the iGEM competition. For the experimental part our general idea was to give them an understanding of principle methods in biotechnology / synthetic biology by using fluorescent proteins. We planned the following experiments:
    • Plasmidisolation of RFP/GFP from a liquid culture.
  • Team Bacterial Laccases:
    • Transformation of a plasmid mixture consisting of two different fluorescent proteins (e.g. RFP and GFP) and different antibiotic resistances into E.coli KRX. It will be plated out on LB agar plates without antibiotics and on plates containing one of the two antibiotics, which are present on the plasmids. This way we can demonstrate the effect of antibiotics as selective pressure.
    • Sending requests to working groups for different plasmids, which have already worked with laccases and described them in their papers.
    • Primerdesign for isolation of laccases from genomic DNA of Xanthomonas campestris B100 and E. coli BL21(DE3). The forward primers were designed with T7 promotor-overhanging ends after prefix and the first 20 bases of the wanted gene. The reverse primers were designed with a HIS-Tag and tweo stop codons before suffix and the last 20 bases of the wanted gene without the stop codon.

Tuesday May 1th

  • Team Student Academy: Searching for two plasmids with different fluorescent proteins behind and antibiotic resistance in parts registry. Found BBa_J04450, a Plasmid with RFP and chloramphenicol resistance (but lacI and CAP sensitive), BBa_J23100, a plasmid with RFP and ampicillin resistance and BBa_I13522, a Plasmid with GFP and ampicillin resistance in Kit Plate 2011.


  • Team Bacterial Laccases: We got answer on our request for a vector with the laccase-ORF CotA from Bacillus pumilus ATCC7061 from the Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomaterials in Switzerland. They promised to send us the plasmid. So we made primers for the laccase in the same way as for E.coli and Xanthomonas campestris laccases with T7 promotor and HIS-Tag.

Wednesday May 2th

Thursday May 3th

  • Team Bacterial Laccases:
    • After the vector has arrived, we transformed it into the competent E.coli KRX which we have already made competent to have a greater amount of vector. The protocol we used was as followed:
      • The electroporation setup: U= 2,5kV C= 25 µF and R= 400 <math>\omega</math>
      • Since we did not know the efficient of our competent KRX we used two different E.coli volumes for the transformation, 50µL and 100µL. We gave 50µL 10% Gylcerol to the reaction tubes with 1µL of the vector DNA (Bacillus pumilus). After the transformation we plated them into ampicillin plates.
    • PCR with the Xanthomonas campestris B100 and E. coli BL21(DE3) genomic DNA to isolate the laccases. Therefore we used the primers Xcc_LAC_FW_T7, Xcc_LAC_RV_HIS, E.coli_LAC_FW_T7 and E.coli_LAC_RV_HIS, which are listed under Materials.
    • PCR table
Material Volume
Buffer (10x Phusion) 10µL
Phusion Polymerase 0,5µL
dNTPs 1µL
Primer Mix 1µL
Template DNA 1µL
DMSO 1,5µL
Water 35µL
    • PCR program
Temperature Time
1) 98°C 30 sec
2) 98°C 15 sec
3) 62°C 45 sec
4) 72°C 1 min
5) 72°C 3 min
6) 12°C

Cycle between step 2 and 4 35 times.


Friday May 4th

Team Bacterial Laccases: Colony PCR on the transformed the Bacillus pumilus plasmid. Unfortunately the control with colony PCR didn't work so we just picked some colony for plasmid isolation in the hope that on the AMP plate were no false positives.