Team:Paris Bettencourt/Encapsulation

From 2012.igem.org

Revision as of 19:10, 24 September 2012 by Iversondylan (Talk | contribs)


iGEM Paris Bettencourt 2012

Title

Contents

Overview

Provide an overview of this sub-project in a couple of phrases

Objectives

Our goal is to design a live-bacteria entrapment system. More than just encapsulating bacteria, we want to fully prevent their escape from the bead body into the surroundings. Alginate and other gel-based beads have been used successfully to prolong enzymatic activity in bioreactors[REF], but systems such as these are designed to allow steady release of microbes.


Design

Protocol for covalent stabilization of live-bacteria containing alginate beads

Experiments and results

Cell Containment Assay

Our objective is to entrap cells that are still viable and able to perform metabolism. To asses this, beads were suspended in buffer and allowed to incubate at room temperature over several days. Presuming that treated beads could result in total cell containment, we wished to see if more viable cells would be released by physically destroying the beads.

Experimental setup

  • 2% Alginate beads containing cells were prepared (50mL saturated culture resuspended in 15 mL fresh LB and mixed with 15 mL 4% Alginate).
  • 4g beads were set aside in PBS at 4° as a negative control for containment (untreated alginate).
  • 8g beads were treated as described above with polyethyleneimine and glutaraldehyde.
  • 4g of treated beads were broken by cutting with a razor blade
  • 4g of Untreated, Treated, and Treated & Broken beads were suspended in PBS buffer and left at room temperature.
  • 100μL of supernatant was plated periodically to quantify release of cells.


Results

Present your results

Testing of the system

Experimental setup

Describe the experiment

Results

Present your results

Copyright (c) 2012 igem.org. All rights reserved. Design by FCT.