Team:Fudan Lux/project introduction

From 2012.igem.org

(Difference between revisions)
 
Line 281: Line 281:
<li class="cat-item"><a href="https://2012.igem.org/wiki/index.php?title=Team:Fudan_Lux/biowave#lightsensor" title="View all posts">Sensor Protein Design</a></li>
<li class="cat-item"><a href="https://2012.igem.org/wiki/index.php?title=Team:Fudan_Lux/biowave#lightsensor" title="View all posts">Sensor Protein Design</a></li>
                                                                         <li class="cat-item"><a href="https://2012.igem.org/wiki/index.php?title=Team:Fudan_Lux/biowave#Application" title="View all posts">Spectrum Analysis</a></li>
                                                                         <li class="cat-item"><a href="https://2012.igem.org/wiki/index.php?title=Team:Fudan_Lux/biowave#Application" title="View all posts">Spectrum Analysis</a></li>
 +
<li class="cat-item"><a href="https://2012.igem.org/wiki/index.php?title=Team:Fudan_Lux/biowave#Application" title="View all posts" style="margin-left: 0px; ">Application</a></li>
 +
<li class="cat-item"><a href="https://2012.igem.org/wiki/index.php?title=Team:Fudan_Lux/result#12" title="View all posts" style="margin-left: 0px; ">Results</a></li>
</ul>
</ul>
</li>
</li>

Latest revision as of 03:57, 27 September 2012

NOVA

Projects We have some really cool stuff to show you!

Project Biowave

As is known to all, negative feedback and time delay can cause oscillation in a pure physical system, such as sounds formed by oscillating air molecules and ripples produced via stirring water. What if the particles of wave are bacteria? In this project, we want to utilize a biological system with the properties of negative feedback and time delay to perform a synchronized oscillation. The biowave system is made by two parts: the light generator and the light sensor. When the light, which generated by the light generator, is strong enough that could be sensed by the light sensor. The sensor protein could repress the expression of light generator. This signal pathway, which based on light, makes the negative feedback. And the expression of light generator makes the time delay.In a single cell the system is a oscillator, within the colony it will perform a synchronization. This is the very first time that bacteria using light as an intercellular and intracellular signal in synthetic biology. The wave pattern or the synchronized oscillation could help us explain a lot of biological problems.

Read more

Bacto-Trafficking

Feature image

The second project of Team Fudan-Lux is about constructing a brand-new biological model using a recently discovered cellular structure termed nanotubes and wild type E.coli K12 MG1655 containing the green fluorescence protein. By inducing and stabilizing nanotubes between cultured Hela cells, a cellular network could be obtained. Then the bacteria containing GFP is introduced into the tumor cells by modified electroporation. In doing so, a new type of biological system is created. More importantly, what we want to study here, is the behavior of the introduced bacteria within Hela cells. Since nanotubes formed between cells act as super highways for material transportation, bacteria thus can move from one cell to another via nanotubes. Given the condition that bacteria would tend to choose the most suitable place for them to live in, in the least energy-consuming way, a distribution pattern thus can be obtained, which have the characteristic of the least increase of entropy. By building such a model, we want to simulate certain types of problems in the real life that can’t be solved by simple computation, e.g. traffic jams between cities, and provide solutions to them.
Read more
All rights reserved. Tempalate Edit by Fudan-lux team Powered By Luiszuno.com