Team:TU-Delft

From 2012.igem.org

(Difference between revisions)
Line 88: Line 88:
<li><a href="https://2012.igem.org/Team:TU-Delft/Modeling/SingleCellModel">Deterministic and stochastic simulations and property analyses of pathway model</a></li>
<li><a href="https://2012.igem.org/Team:TU-Delft/Modeling/SingleCellModel">Deterministic and stochastic simulations and property analyses of pathway model</a></li>
<li><a href="https://2012.igem.org/Team:TU-Delft/Modeling/SingleCellModel">Data fitting for deterministic pathway model</a></li>
<li><a href="https://2012.igem.org/Team:TU-Delft/Modeling/SingleCellModel">Data fitting for deterministic pathway model</a></li>
-
<li><a href="https://2012.igem.org/Team:TU-Delft/Modeling/StructuralModeling">Prediction of a ligand-binding niche within the human niacin receptor 1 with Molecular Dynamics simulations </a></li>
+
<li><a href="https://2012.igem.org/Team:TU-Delft/Modeling/StructuralModeling#A1">Prediction of a ligand-binding niche within the human niacin receptor 1 with Molecular Dynamics simulations </a></li>
<li><a href="https://2012.igem.org/Team:TU-Delft/HumanOutreach">We brought synthetic biology to a very large public by participating in several events like Llowlab on Lowlands and the Floriade.</a></li>
<li><a href="https://2012.igem.org/Team:TU-Delft/HumanOutreach">We brought synthetic biology to a very large public by participating in several events like Llowlab on Lowlands and the Floriade.</a></li>
<li><a href="https://2012.igem.org/Team:TU-Delft/HP">Our main goal is to innovate a diagnostic tool for tuberculosis, one of the major health issues in the world</a></li>
<li><a href="https://2012.igem.org/Team:TU-Delft/HP">Our main goal is to innovate a diagnostic tool for tuberculosis, one of the major health issues in the world</a></li>

Revision as of 03:41, 27 September 2012

Menu
TUDelft -Leiden iGEM 2012
close



Snifferomyces: A Tuberculosis Screening Automaton


The 2012 project of the TU Delft iGEM team, draws inspiration from the sniffer rats which can be trained to sniff out unexploded landmines and tuberculosis. Tuberculosis infects around 8 million people a year and kills approximately 2 million. Drugs to treat tuberculosis have been around for a long time, so a rapid diagnosis system can help curb the spread of the disease. This year our team takes the first steps to make for this problem a screening olfactory automation!



Project Abstract

The aim of this year’s iGEM project will be the synthesis of an olfactory device for the purpose of characterization of volatile compound. Here, the aim is to introduce olfactory receptor gene fusions into Saccharomyces cerevisiae and linking these receptors to a transcription response. Aims:

  1. The diagnostics of the presence of tuberculosis bacteria in the lungs by sensing chemical compound methyl nicotinate by S. cerevisiae. For diagnostics, the response to these molecules is light, generated by the Lux proteins (visible blue light) or GFP (fluorescent green).
  2. Introducing receptors for sensing the presence of banana-smell (iso-amyl acetate). This is done to see whether communication between S. cerevisiae and E. coli is possible by this volatile intermediate.
  3. Supplying a toolkit which allows scientists to introduce olfactory receptors in yeast with minimal effort. Further we want to characterize the receptor parts submitted by the 2009 Hongkong university.

Yes! We are at the National News!!! You can read the article from NRC Handelsblad here!
But this is not enough. We really need your enhancement in order to succeed to our effort. Please help us improve our world! You can find more information in our Crowdfunding Page
.

Do not forget to get our app at your phone!! Stay informed about all the updates in our wiki through your android !! To download it press here

You can also find us on facebook!

Our Sponsors