Team:TU-Delft/overview

From 2012.igem.org

(Difference between revisions)
Line 13: Line 13:
<h2>Do you smell bananas?</h2>   
<h2>Do you smell bananas?</h2>   
<h3>Yeast, we choose you!</h3>             
<h3>Yeast, we choose you!</h3>             
-
<p>
+
<p >
The TU Delft iGEM team is working on yeast, a simple eukaryote. One of our goals is to enable this organism to detect, or smell, the scent associated with tuberculosis or bananas.  
The TU Delft iGEM team is working on yeast, a simple eukaryote. One of our goals is to enable this organism to detect, or smell, the scent associated with tuberculosis or bananas.  
For this project, we will use the mating pathway and alter it a little. Yeast genders are called  'a' and 'α'. Both genders extract pheromones, also called 'a'- and 'α'-pheromones. The 'a'-Yeasts are able to detect the 'α'-pheromones, and so the other way around.  </p>
For this project, we will use the mating pathway and alter it a little. Yeast genders are called  'a' and 'α'. Both genders extract pheromones, also called 'a'- and 'α'-pheromones. The 'a'-Yeasts are able to detect the 'α'-pheromones, and so the other way around.  </p>
-
<p>The image below links to the page explaining more about yeast and why we decided to use it!</p>
+
<p style="color:#2ab118;">The image below links to the page explaining more about yeast and why we decided to use it!</p>
<a href="https://2012.igem.org/Team:TU-Delft/Yeast" rel="lightbox" title="shmoo">
<a href="https://2012.igem.org/Team:TU-Delft/Yeast" rel="lightbox" title="shmoo">
<img src="https://static.igem.org/mediawiki/igem.org/b/b3/Shmooooo.jpg" name="kugroup" width="570"  border="0" id="kugroup" /></a></div>
<img src="https://static.igem.org/mediawiki/igem.org/b/b3/Shmooooo.jpg" name="kugroup" width="570"  border="0" id="kugroup" /></a></div>

Revision as of 15:40, 26 September 2012

Menu

Receptor

Do you smell bananas?

Yeast, we choose you!

The TU Delft iGEM team is working on yeast, a simple eukaryote. One of our goals is to enable this organism to detect, or smell, the scent associated with tuberculosis or bananas. For this project, we will use the mating pathway and alter it a little. Yeast genders are called 'a' and 'α'. Both genders extract pheromones, also called 'a'- and 'α'-pheromones. The 'a'-Yeasts are able to detect the 'α'-pheromones, and so the other way around.

The image below links to the page explaining more about yeast and why we decided to use it!


Yeast G protein-coupled receptors

In this project we choose to work with the budding yeast Saccharomyces cerevisiae as a host organism because it utilizes already a GPCR pathway. Furthermore S. cerevisiae has been successfully used for functional expression of GPCR’s [3,4], a lot of genomic tools are available, and it has a fully characterized genome. In S. cerevisiae two GPCR cascades have been identified: a glucose sensing pathway and a mating pathway [5]. There are two sexes of yeast cells, MATa and MATα. Whenever pheromones (small peptides) of the opposite sex are bound to the specific G-protein coupled receptors (Ste2 p or Ste3p), the MAP kinase cascade is turned on, leading to induction of mating genes such as FUS1 and growth arrest mediated by the FAR1 promoter. This mating response can be seen in the form of a morphological change, called shmoo formation. In figure 1 an overview of the pheromone and glucose signaling pathways in S. cerevisiae is shown.


Overview of pheromone and glucose signaling in S. cerevisiae. Figure adapted from Versele et al.

Introduction of a new olfactory receptor

Previously it was found that that the yeast pheromone signaling pathway can be coupled to a mammalian olfactory receptor. Minic et al. succeeded in functional expressing the rat 17 OR and its trafficking to the plasma membrane in S. cerevisiae. Between the three GPCRs that are known in S. cerevisiae, Ste2, Ste3 and Gpr1, the sequence similarity is limited. Except for pheromone receptors in Schizosaccharomyces pombe and Kluyveromyces lactis, Ste2 and Ste3 are largely unrelated in sequence to other GPCRs [5]. Nevertheless, the yeast pheromone receptors can be functionally replaced by several mammalian GPCRs so that the pheromone pathway can be activated by the corresponding ligands [4].


Chimeric design

A major hindrance for functional expression of ORs has been that the receptors did not localize in the membrane or that the downstream coupling of the receptor to the Gα did not work properly. It has been shown that the rat olfactory receptor 17 (R17) that responds to octanal can be functionally expressed in many different cell types, including S. cerevisiae [6]. Earlier research investigated on the question whether the RI7 sequence can be used to functionally express other ORs. Sequence analysis of ORs have shown that the N-termini of the receptor are involved in plasma membrane localization, whereas the C-termini generally define the specificity for G protein interaction [7]. Based on this observations Radhika et al. functionally expressed a chimeric OR with the N-terminus and the C-terminus of the RI7 sequence. A schematic picture is shown in figure 2. In this iGEM project we use the same approach as Radhika et al. by substituting the receptor termini with the RI7 sequences.


References

[1] Haiqing Zhao, Lidija Ivic, Joji M. Otaki, Mitsuhiro Hashimoto, Katsuhiro Mikoshiba, Stuart Firestein*Functional Expression of a Mammalian Odorant Receptor, Science 279, 237 (1998)
[2] Venkat Radhika, Tassula Proikas-Cezanne, Muralidharan Jayaraman, Djamila Onesime, Ji Hee Ha &Danny N Dhanasekaran, Chemical sensing of DNT by engineered olfactory yeast strain Nature Chemical Biology 3 (2007)
[3] Jasmina Minic, Marie-annick Persuy, Elodie Godel, Josiane Aioun, Ian Connerton, Roland Salesse, Functional expression of olfactory receptors in yeast and development of a bioassay for odorant screening, FEBS Journal (2005)
[4] Brown et al, Functional coupling of mammalian receptors to the yeast mating pathway using novel yeast/mammalian G protein a-subunit chimeras, Yeast (2000)
[5] Matthias Versele, Katleen Lemaire, and Johan M. Thevelein, Sex and sugar in yeast: two distinct GPCR systems, EMBO Rep. 2001
[6] Dietmar Krautwurst, King-Wai Yau, and Randall R. Reed, Identification of Ligands for Olfactory Receptors by Functional Expression of a Receptor Library, Cell (1998)
[7] Venkat Radhika, Tassula Proikas-Cezanne, Muralidharan Jayaraman, Djamila Onesime, Ji Hee Ha & Danny N Dhanasekaran, Chemical sensing of DNT by engineered olfactory yeast strain, Nature Chemical biology (2007)

Parts

A design of the receptor construct was made with the olfactory receptors placed between the N-terminal and the C-terminal part of the rat I7 receptor. As a promoter the strong constitutive GPDpr is used and as a terminator the CYC1 terminator. The receptor can be replaced by using the restriction sites BamHI and NdeI. A FLAG tag is added upstream of the receptor sequence to look at the localization of the receptor in the membrane. The plasmid construct for the receptor expression was obtained by restriction of the synthesized receptor construct and ligation in the pRSII415 expression vector.


Results

Transformations

After transformation of the plasmids in the yeast strain a PCR reaction was performed in order to verify if the plasmid was correctly transformed. Since the PCR reactions were performed with single colonies we expected to obtain one PCR product with the length of the receptor part. However, for all the receptors we saw multiple PCR products on the gel; products with the length of the receptor, and products indicating that only the plasmid backbone was present (without the receptor) . This can indicate that during growth of the yeast a part of the plasmid was emitted.


Expression of the receptor

Cells were stained with anti-FLAG antibodies and viewed under a fluorescence microscope. It can be seen that there is expression of the receptor: cells with the receptor part are highly fluorescent and the WT strain is very weakly fluorescent.


Membrane localization

In some of the cells there is clear halo structure visible, which may indicate localization of the receptor on the membrane. However there is also a possibility that these are patches on the membrane or in the ER membrane.

Conclusions

An olfactory receptor placed between the N-terminal and the C-terminal part of the rat I7 receptor is expressed in yeast. In some of the cells there is a halo structure visible, this may indicate localization of the receptor on the membrane.


Recommendations

For future work it is recommended to use an inducible promoter instead of a strong constitutive promoter as GPDpr.