Team:TU-Delft/HP

From 2012.igem.org

(Difference between revisions)
 
(56 intermediate revisions not shown)
Line 6: Line 6:
<img src="https://static.igem.org/mediawiki/igem.org/7/74/Background_greenlamp.jpg" class="bg_team">
<img src="https://static.igem.org/mediawiki/igem.org/7/74/Background_greenlamp.jpg" class="bg_team">
<div id="logo_ed"><a href="https://2012.igem.org/Team:TU-Delft" 'onfocus=this.blur()'><img src="https://static.igem.org/mediawiki/igem.org/8/88/Logoigemklein.png" border="0" width="100" height="100"></a></div>
<div id="logo_ed"><a href="https://2012.igem.org/Team:TU-Delft" 'onfocus=this.blur()'><img src="https://static.igem.org/mediawiki/igem.org/8/88/Logoigemklein.png" border="0" width="100" height="100"></a></div>
 +
<div id="contentbox" style="text-align:justify;">
-
<img src="https://static.igem.org/mediawiki/igem.org/2/26/HumanPractice.jpg" align="middle" width="100%">
+
<img src="https://static.igem.org/mediawiki/igem.org/e/ed/Nieuwe_header_human_practices.jpg" align="middle" width="100%">
 +
<br/>
 +
<br/>
-
<div id="contentbox" style="text-align:justify;">
+
<h2>Snifferomyces - A solution for world problems?</h2><br>
 +
<p>This is a very complicated question. When we started the project, first was determined on which possible solutions we would perform study:
 +
<ul>
 +
<li>Tuberculosis Detection
 +
<li>Detection of explosives
 +
</ul>
 +
The tuberculosis detection was our main case study and a lot of wetlab work on this possible methyl nicotinate receptor has been done.
 +
The detection of explosives is a application we thought of was inspired by the K-9's detecting explosives. Reportings of sensing DNT by yeast strains (Venkat Radhika et al. (2007)) supported this.
 +
<br/>
 +
<h4>Is Snifferomyces the solution for tuberculosis detection?</h4>
 +
This question is approached on two different ways. A interview with Dr. Rene Lutter and a implementation study. For the implementation study we subdivided
 +
this question into several smaller, more specific questions.
 +
<ul>
 +
<li>What is tuberculosis?
 +
<li>What are the present diagnostic tools?
 +
<li>Why would a diagnostic tool based on our principle contribute?
 +
<li>What does the problem area look like?
 +
<li>What would be the possible drawbacks during R&D and usage?
-
<h2>Snifferomyces - A Tuberculosis Screening Automaton</h2><br>
+
</ul>
-
<p> What is the use of technology, if it cannot contribute to improving human life? With this thought in mind, the TU Delft 2012 iGEM team, composed of students from the life sciences, bioinformatics, applied physics, aerospace, maritime, mechanical and chemical engineering disciplines decided to use the platform of synthetic biology, addressing a real challenge affecting millions of people .
+
<h4>Is Snifferomyces the solution for explosive detection?</h4>
-
<br/>
+
In this case we didn't do a wetlab study but spoke to the <i>Royal Dutch Military Police</i>. The Royal Dutch Military Police are present
-
Inspired by the sniffer rats trained to smell the presence of tuberculosis, the team decided to build an autonomous olfactory system to detect volatile compounds, by re-inventing man's oldest industrial microorganism, yeast, to provide for a non-invasive, rapid and cost-effective diagnosis system for tuberculosis. The reason why we have chosen for yeast, is that yeast is relative cheap to grow. Furthermore yeast has the ability to sense low amounts of concentration of specific compounds and can be storage for a long time.</p>
+
at Schiphol to detect possible threats to the National Security. One part of their job is to be on the lookout for explosives. This is mainly
 +
done by K-9's, we asked their opinion about using micro organisms and GMO's as explosive detectors!
 +
</p>
 +
<center><h3>Please click on the photo's to see the project</h3></center>
 +
<center>
 +
<table id="tbtext">
 +
<tr>
 +
<th>Military Police</th>
 +
<th>Implementation Study</th>
 +
<th>Interview with Doctor</th>
 +
</tr>
 +
<tr>
 +
<td><a href="https://2012.igem.org/Team:TU-Delft/HP/MP" target="_blank">
 +
<img src="https://static.igem.org/mediawiki/igem.org/9/9a/Hond.jpg" height="130" width="189"/></a></td>
 +
<td><a href="https://2012.igem.org/Team:TU-Delft/HP/Study" target="_blank">
 +
<img src="https://static.igem.org/mediawiki/igem.org/b/b2/HospitalILHAM.JPG" height="130" width="189"/></a></td>
 +
<td><a href="https://2012.igem.org/Team:TU-Delft/HP/DocTalk" target="_blank">
 +
<img src="https://static.igem.org/mediawiki/igem.org/d/d2/Stethoscope-2.png" height="130" width="189"/></a></td>
 +
</tr></table>
 +
</center>
 +
<br/>
-
<p>For our Human Practice we did a study to in what extent our proof of principle, if it would be translated into a product, could make a difference. Below we evaluate the most important questions. </p>
+
<br>
-
<h3>What is Tuberculosis?</h3>
+
 
-
<p>Tuberculosis is a bacterial infection. TB usually attacks the lungs, but can also attack other parts of the body, such as the brain, spine, or kidneys. TB bacteria can live in the body without making a person sick. This is called latent TB infection. People with latent TB infection do not feel sick, do not have TB symptoms, and cannot spread TB bacteria to others. Some people with latent TB infection go on to develop TB disease.
+
-
<br/>In 2010, 8.8 million people were infected with TB and 1.4 million died from it. Over 95% of TB deaths occur in low -and middle- income countries.</p>
+
-
<p>At the map below you can see the countries suffering from Tuberculosis. According to <a href="http://www.vaccinatiesopreis.nl">www.vaccinatiesopreis.nl</a> the dark green refers to many cases of TB, the light green to less and the white to a few cases.</p>
+
-
<div style="position:relative; align:center; top:0; left:0;  width:580px; height:240px; border:0; margin:0 0 20px 0; padding:0; ">
+
-
<a href="https://static.igem.org/mediawiki/igem.org/4/4a/TBmap.gif" rel="lightbox" title="Tuberculosismap">
+
-
<img src="https://static.igem.org/mediawiki/igem.org/4/4a/TBmap.gif" name="kugroup" width="570"  border="0" id="kugroup" /></a></div>
+
-
<br/><br/><br/><br/><br/><br/><br/>
+
-
<h3>The problem</h3>
 
-
<p>The problem of tuberculosis lies mainly in the less developed countries. The frontline are the remote areas where the people have no or limited access to hospitals with sufficient facilities. Standard TB diagnostic tools are either expensive and need to be used in a lab setting or not very reliable, posing major barriers for diagnosing.
 
-
</p>
 
-
 
-
<h3>Six Ways to Diagnose Tuberculosis</h3>
 
-
<p>These are six main diagnosis tools for TB. The problem is that there is not one of them that is very reliable and suitable for the frontline. Not suitable for the frontline because it needs facilities, doesn't give a quick result and/or is expensive.</p>
 
-
<body>
 
-
    <ul>
 
-
          <li>Tuberculin Skin Test (TST)
 
-
          <li>Sputum Smear Microscopy (SSM)
 
-
          <li>Polymerase Chain Reaction (PCR)
 
-
<li>Blood Test for TB detection
 
-
<li>Chest X-ray
 
-
<li>Culture
 
-
    </ul>
 
-
</body>
 
-
 
-
<h3>Our ideal Solution</h3>
 
-
<p>A cheap test that quickly gives an reliable result, that can be taken by a 4x4 car to the people.</p>
 
-
 
-
<h3>What would a test based on our principle contribute?</h3>
 
-
<p><h6>Reach</h6>Yeast cells can be kept in dried form, which makes them very well transportable and easy to store. Remote areas can be easily reached.
 
-
</br><h6>Evaluating of test result</h6>Now we did the tests with GFP but if would use a visible output, it would be very easy to see a result. Which also mean that there are not many facilities needed.
 
-
</br><h6>Cheap</h6>The producing of a large amount of yeast cells is in general not this expensive.
 
-
</br><h6>Reliability</h6> This is something that should still be evaluated.
 
-
</br><h6>Waiting time</h6> The waiting time for the result will be approximately 3 hours.</p>
 
-
<br/>
 
-
 
-
<h3>Example Mozambique; lack of facilities</h3>
 
-
Mozambique ranks the 19th among the 22 Tuberculosis High Burden Countries 2011.
 
-
First some facts and figures about Mozambique according to the <a href="http://www.afro.who.int/en/mozambique/country-programmes/aids-tuberculosis-and-malaria/tuberculosis.html" target="_blank">WHO</a>
 
-
<p>One of our team members, Isabelle, traveled to Mozambique in 2011, accompanied by a lung physician. The lack of the diagnostic capacity is very clear at the hospital of Ilha de Mocambique. Ilha de Mocambique inhabits 14.000 people and they are relying on the hospital there. The picture of the Hospital is taken in july 2011.</p><img src="https://static.igem.org/mediawiki/igem.org/b/b2/HospitalILHAM.JPG" height="330" width="600"/>
 
-
<br/>
 
</div>
</div>
-
<img src="https://static.igem.org/mediawiki/igem.org/3/37/Footer_2.jpg" align="middle" width="690">
+
<img src="https://static.igem.org/mediawiki/igem.org/3/37/Footer_2.jpg" align="middle" width="690"></img>
<a href='https://2012.igem.org/Main_Page' target="_blank"><div id='logo_igem2'></div><a/> </body></html>
<a href='https://2012.igem.org/Main_Page' target="_blank"><div id='logo_igem2'></div><a/> </body></html>

Latest revision as of 01:16, 27 October 2012

Menu

Human Practice


Snifferomyces - A solution for world problems?


This is a very complicated question. When we started the project, first was determined on which possible solutions we would perform study:

  • Tuberculosis Detection
  • Detection of explosives
The tuberculosis detection was our main case study and a lot of wetlab work on this possible methyl nicotinate receptor has been done. The detection of explosives is a application we thought of was inspired by the K-9's detecting explosives. Reportings of sensing DNT by yeast strains (Venkat Radhika et al. (2007)) supported this.

Is Snifferomyces the solution for tuberculosis detection?

This question is approached on two different ways. A interview with Dr. Rene Lutter and a implementation study. For the implementation study we subdivided this question into several smaller, more specific questions.
  • What is tuberculosis?
  • What are the present diagnostic tools?
  • Why would a diagnostic tool based on our principle contribute?
  • What does the problem area look like?
  • What would be the possible drawbacks during R&D and usage?

Is Snifferomyces the solution for explosive detection?

In this case we didn't do a wetlab study but spoke to the Royal Dutch Military Police. The Royal Dutch Military Police are present at Schiphol to detect possible threats to the National Security. One part of their job is to be on the lookout for explosives. This is mainly done by K-9's, we asked their opinion about using micro organisms and GMO's as explosive detectors!

Please click on the photo's to see the project

Military Police Implementation Study Interview with Doctor