Team:Paris Bettencourt
From 2012.igem.org
(Difference between revisions)
Line 33: | Line 33: | ||
<li>An improved killswitch featuring delayed population-level suicide through complete genome degradation.</li></ul></li> | <li>An improved killswitch featuring delayed population-level suicide through complete genome degradation.</li></ul></li> | ||
- | + | We will strive to make our system as robust against mutations as possible | |
- | + | ||
Line 42: | Line 41: | ||
</ul> | </ul> | ||
- | |||
- | |||
- | |||
</p> | </p> | ||
Revision as of 16:19, 3 September 2012
Abstract
During previous years’ competitions, many iGEM teams have developed projects that propose the application of Genetically Engineered Organisms (GEO) in natural environments. However, issues of biosafety continue to complicate and constrain the use of GEOs outside the lab. A primary concern is the Horizontal Gene Transfer (HGT) of synthetic genes to natural populations. Various strategies have been developed to address this problem, providing varying levels of containment. However, the substantial elimination of HGT risks remains difficult or perhaps impossible.
Our project aims to :
- Raise the issue of biosafety, and advocate the discerning use of biosafety circuits in future iGEM projects as a requirement
- Evaluate the risk of HGT in different SynBio applications
- Develop a new, improved containment system to expand the range of environments where GEOs can be used safely.
To do so, we will :
- Engage the general public and scientific community through debate
- Raise the question about how can we regulate this practices ?
- Compile a parts page of safety circuits in the registry
- Rely on three levels of containment :
- Physical containment with alginate capsules
- Semantic containment using an amber suppressor system
- An improved killswitch featuring delayed population-level suicide through complete genome degradation.
We will strive to make our system as robust against mutations as possible