Team:BostonU/Project Overview

From 2012.igem.org

(Difference between revisions)
Line 156: Line 156:
<br>
<br>
<ul>
<ul>
-
<p>
+
 
<h7><p dir="ltr">Our project aims to introduce a standardized protocol for the characterization of genetic circuits using flow cytometry. We built a vast number of both simple and complex genetic circuits that were characterized using flow cytometry. These genetic circuits were built using an assembly technique called MoClo (developed by Weber et al., 2011), which involves a multi-way, one-pot digestion-ligation reaction, enabling faster and more efficient construction of genetic circuits. We converted a large subset of <a href="http://partsregistry.org/">BioBrick™ Parts from the Registry</a> into MoClo Parts using PCR and cloning strategies. We built and characterized various genetic circuits using MoClo Parts and compared them against their pre-existing BioBrick™ counterparts in order to compare the characterization results from the two assembly techniques. We also created a standardized data sheet to be included in the Registry of Standard Biological Parts for each Part we characterized to easily share our data with the synthetic biology community.  
<h7><p dir="ltr">Our project aims to introduce a standardized protocol for the characterization of genetic circuits using flow cytometry. We built a vast number of both simple and complex genetic circuits that were characterized using flow cytometry. These genetic circuits were built using an assembly technique called MoClo (developed by Weber et al., 2011), which involves a multi-way, one-pot digestion-ligation reaction, enabling faster and more efficient construction of genetic circuits. We converted a large subset of <a href="http://partsregistry.org/">BioBrick™ Parts from the Registry</a> into MoClo Parts using PCR and cloning strategies. We built and characterized various genetic circuits using MoClo Parts and compared them against their pre-existing BioBrick™ counterparts in order to compare the characterization results from the two assembly techniques. We also created a standardized data sheet to be included in the Registry of Standard Biological Parts for each Part we characterized to easily share our data with the synthetic biology community.  
</h7>
</h7>
</p>
</p>
</ul>
</ul>

Revision as of 14:50, 17 August 2012

BostonU iGEM Team: Welcome


Project Overview


Coming Soon!

Abstract



    Our project aims to introduce a standardized protocol for the characterization of genetic circuits using flow cytometry. We built a vast number of both simple and complex genetic circuits that were characterized using flow cytometry. These genetic circuits were built using an assembly technique called MoClo (developed by Weber et al., 2011), which involves a multi-way, one-pot digestion-ligation reaction, enabling faster and more efficient construction of genetic circuits. We converted a large subset of BioBrick™ Parts from the Registry into MoClo Parts using PCR and cloning strategies. We built and characterized various genetic circuits using MoClo Parts and compared them against their pre-existing BioBrick™ counterparts in order to compare the characterization results from the two assembly techniques. We also created a standardized data sheet to be included in the Registry of Standard Biological Parts for each Part we characterized to easily share our data with the synthetic biology community.