Team:TU-Delft

From 2012.igem.org

(Difference between revisions)
Line 72: Line 72:
<!-- end logo photos -->
<!-- end logo photos -->
-
<table style="border:5px solid green;">
+
<h2>Snifferomyces:Yeast with a sense of smell</h2>
-
<td style="font-size:110%;">
+
-
<strong style="font-size:120%;">Snifferomyces:Yeast with a sense of smell</strong>
+
<p><b>G-protein–coupled receptors (GPCRs)</b> form a remarkable <b>modular system</b> that allows <b>transmission of a wide variety of signals</b> over the cell membrane, between cells and over long distances in the human body. The GPCRs <b>mediate a flow of information</b> that tells the inside of cells about the conditions on their outside, which includes signals from <b>neurotransmitters</b> (such as adrenaline and dopamine), <b>hormones</b> (such as follicle stimulating hormone, which helps control ovulation), and even <b>light</b> in our eyes and <b>smell</b> molecules in our noses, thus acting as both the <b>gatekeepers</b> and <b>molecular messengers</b> of the cell.</p>
<p><b>G-protein–coupled receptors (GPCRs)</b> form a remarkable <b>modular system</b> that allows <b>transmission of a wide variety of signals</b> over the cell membrane, between cells and over long distances in the human body. The GPCRs <b>mediate a flow of information</b> that tells the inside of cells about the conditions on their outside, which includes signals from <b>neurotransmitters</b> (such as adrenaline and dopamine), <b>hormones</b> (such as follicle stimulating hormone, which helps control ovulation), and even <b>light</b> in our eyes and <b>smell</b> molecules in our noses, thus acting as both the <b>gatekeepers</b> and <b>molecular messengers</b> of the cell.</p>
<p>There are around <b>800 known human GPCRs</b>, of which about <b>half</b> are the <b>olfactory receptors</b> that allow us to distinguish thousands of different aromas. This basic molecular mechanism of <b>olfactory receptor activation is conserved evolutionarily from yeast to humans</b>.Drawing inspiration from the <b>sniffer rats</b> which can be trained to sniff out <b>unexploded landmines</b> and <b>tuberculosis</b>, as part of this year’s iGEM competition we are aiming to use this molecular mechanism to develop a <b>universal olfactory system</b> for the purpose of <b>characterization of volatile compounds</b>, by  introducing olfactory <b>receptor gene fusions</b> into <i>Saccharomyces cerevisiae</i> and <b>linking</b> these receptors to a <b>transcription response</b>.
<p>There are around <b>800 known human GPCRs</b>, of which about <b>half</b> are the <b>olfactory receptors</b> that allow us to distinguish thousands of different aromas. This basic molecular mechanism of <b>olfactory receptor activation is conserved evolutionarily from yeast to humans</b>.Drawing inspiration from the <b>sniffer rats</b> which can be trained to sniff out <b>unexploded landmines</b> and <b>tuberculosis</b>, as part of this year’s iGEM competition we are aiming to use this molecular mechanism to develop a <b>universal olfactory system</b> for the purpose of <b>characterization of volatile compounds</b>, by  introducing olfactory <b>receptor gene fusions</b> into <i>Saccharomyces cerevisiae</i> and <b>linking</b> these receptors to a <b>transcription response</b>.
</p>
</p>
-
</td>
 
-
</table>
 
<br/>
<br/>
<center><p style="color:#2ab117; background-color:gold;" ><strong> Advanced to the World Championship Jamboree!! </strong></p></center>
<center><p style="color:#2ab117; background-color:gold;" ><strong> Advanced to the World Championship Jamboree!! </strong></p></center>

Revision as of 06:39, 26 October 2012

Menu
TUDelft -Leiden iGEM 2012
close

Snifferomyces:Yeast with a sense of smell

G-protein–coupled receptors (GPCRs) form a remarkable modular system that allows transmission of a wide variety of signals over the cell membrane, between cells and over long distances in the human body. The GPCRs mediate a flow of information that tells the inside of cells about the conditions on their outside, which includes signals from neurotransmitters (such as adrenaline and dopamine), hormones (such as follicle stimulating hormone, which helps control ovulation), and even light in our eyes and smell molecules in our noses, thus acting as both the gatekeepers and molecular messengers of the cell.

There are around 800 known human GPCRs, of which about half are the olfactory receptors that allow us to distinguish thousands of different aromas. This basic molecular mechanism of olfactory receptor activation is conserved evolutionarily from yeast to humans.Drawing inspiration from the sniffer rats which can be trained to sniff out unexploded landmines and tuberculosis, as part of this year’s iGEM competition we are aiming to use this molecular mechanism to develop a universal olfactory system for the purpose of characterization of volatile compounds, by introducing olfactory receptor gene fusions into Saccharomyces cerevisiae and linking these receptors to a transcription response.


Advanced to the World Championship Jamboree!!


Snifferomyces: A Tuberculosis Screening Automaton


The 2012 project of the TU Delft iGEM team, draws inspiration from the sniffer rats which can be trained to sniff out unexploded landmines and tuberculosis. Tuberculosis infects around 8 million people a year and kills approximately 2 million. Drugs to treat tuberculosis have been around for a long time, so a rapid diagnosis system can help curb the spread of the disease. This year our team takes the first steps to make for this problem a screening olfactory automation!






Do not forget to get our app at your phone!! Stay informed about all the updates in our wiki through your android !! To download it press here


Our Sponsors