Team:NYMU-Taipei/ymis3.html
From 2012.igem.org
(Created page with "<html xmlns="http://www.w3.org/1999/xhtml"> <head> <meta http-equiv="Content-Type" content="text/html; charset=utf-8" /> <title>NYMU iGEM</title> <link href="http://www.royals.co...") |
|||
Line 86: | Line 86: | ||
<div class=out style='text-align:center'> | <div class=out style='text-align:center'> | ||
- | <img border="0" src=" | + | <img border="0" src="https://static.igem.org/mediawiki/2012/d/d9/S6.gif" align="center" alt="" width="299" height="257" /><br /> |
</div> | </div> | ||
<br /> | <br /> | ||
Line 92: | Line 92: | ||
<br /> | <br /> | ||
<div class=out style='text-align:center'> | <div class=out style='text-align:center'> | ||
- | <img src=" | + | <img src="https://static.igem.org/mediawiki/igem.org/7/76/Ymis7.gif" alt="" width="495" height="388" /><br /> |
<p align="center">pTrc-kan-Cys I plasmid<br /> | <p align="center">pTrc-kan-Cys I plasmid<br /> | ||
</p></div> | </p></div> | ||
- | <div class=out style='text-align:center'><img src=" | + | <div class=out style='text-align:center'><img src="https://static.igem.org/mediawiki/2012/0/0a/S9.gif" alt="" width="342" height="248" /><br /> |
</div> | </div> | ||
Line 101: | Line 101: | ||
<div class=out style='text-align:center'> | <div class=out style='text-align:center'> | ||
- | <img src=" | + | <img src="https://static.igem.org/mediawiki/igem.org/8/8c/Ymis8.gif" alt="" width="409" height="118" /><br /> |
<p align="center">Biobrick of Cys I sulfite reductase<br /> | <p align="center">Biobrick of Cys I sulfite reductase<br /> | ||
<br /> | <br /> | ||
Line 115: | Line 115: | ||
<p>As same as Cys I gene, we get the whole gene sequence of Dsr I and Dsr II gene<br /> | <p>As same as Cys I gene, we get the whole gene sequence of Dsr I and Dsr II gene<br /> | ||
from NCBI web (http://www.ncbi.nlm.nih.gov/protein/CAC09931.1). DsrI and DsrII also contain endogenous EcoRI and PstI site, so we clone them into noval cassette- new pSB1C3( Mfe I-Xba I -pSB1C3-Sbf I-Spe I). We create a BamH I site inside of DsrI and DsrII, in order to combine them into a whole part, “Dsr”. Enzyme check by XbaI and Spe I , we can get ~5800 bp, which means our gene constraction is correct!! Subclone our Dsr into stable expressing plasmid, pTrc-kan plasmid (constructed by Prof. Chang). pSB1C3-Dsr cut with MfeI and SPeI, pTrc-kan cut with EcoRI and XbaI. Finally we can get ~9800bp plasmid, pTrc-kan-Dsr gene. Enzyme check by BamHI, we can ~1200bp. </p> | from NCBI web (http://www.ncbi.nlm.nih.gov/protein/CAC09931.1). DsrI and DsrII also contain endogenous EcoRI and PstI site, so we clone them into noval cassette- new pSB1C3( Mfe I-Xba I -pSB1C3-Sbf I-Spe I). We create a BamH I site inside of DsrI and DsrII, in order to combine them into a whole part, “Dsr”. Enzyme check by XbaI and Spe I , we can get ~5800 bp, which means our gene constraction is correct!! Subclone our Dsr into stable expressing plasmid, pTrc-kan plasmid (constructed by Prof. Chang). pSB1C3-Dsr cut with MfeI and SPeI, pTrc-kan cut with EcoRI and XbaI. Finally we can get ~9800bp plasmid, pTrc-kan-Dsr gene. Enzyme check by BamHI, we can ~1200bp. </p> | ||
- | <div class="out" style='text-align:center'><img border="0" src=" | + | <div class="out" style='text-align:center'><img border="0" src="https://static.igem.org/mediawiki/2012/2/2b/S10.gif" align="center" alt="" width="417" height="246" /><br /> |
</div> | </div> | ||
Line 126: | Line 126: | ||
<br /> | <br /> | ||
- | <div class="out" style='text-align:center'><img src=" | + | <div class="out" style='text-align:center'><img src="https://static.igem.org/mediawiki/igem.org/1/1b/Ymis11.gif" alt="" width="393" height="127" /><br /> |
<p align="center">Biobrick of Dsr Sulfite Reductase </p></div> | <p align="center">Biobrick of Dsr Sulfite Reductase </p></div> | ||
</div> | </div> |
Revision as of 03:39, 27 September 2012
Gene Cloning of Cys I Sulfite Reductase
Firstly, we get the whole gene sequence of Cys I from NCBI web (www.ncbi.nlm.nih.gov/gene/878581). Cys I contain endogenous EcoRI and PstI site, so we can’t clone into PSB1C3 directly.As a result, We create a noval cassette- new pSB1C3( Mfe I-Xba I -pSB1C3-Sbf I-Spe I) for easily cloning. Taking advantage of MfeI and EcoRI are compatible, also SbfI and XbaI, we can easily clone Cys I gene into pSB1C3 standard biobrick. Enzyme check by XbaI and SbfI, we can get ~1700bp band, which means our gene constraction is correct!!
In order to establish stable expression cyanobacteria system, we need to subclone our Cys I into stable expressing plasmid, pTrc-kan plasmid (constructed by Prof. Chang). pSB1C3-Cys I cut with MfeI and SPeI. pTrc-kan cut with EcoRI and XbaI. Finally we can get ~7100bp plasmid, pTrc-kan-Cys I gene. Enzyme check by SpeI and get ~2100bp and ~3000bp bands.
pTrc-kan-Cys I plasmid
Biobrick of Cys I sulfite reductase
Gene Cloning of Dsr Sulfite Reductase
As same as Cys I gene, we get the whole gene sequence of Dsr I and Dsr II gene
from NCBI web (http://www.ncbi.nlm.nih.gov/protein/CAC09931.1). DsrI and DsrII also contain endogenous EcoRI and PstI site, so we clone them into noval cassette- new pSB1C3( Mfe I-Xba I -pSB1C3-Sbf I-Spe I). We create a BamH I site inside of DsrI and DsrII, in order to combine them into a whole part, “Dsr”. Enzyme check by XbaI and Spe I , we can get ~5800 bp, which means our gene constraction is correct!! Subclone our Dsr into stable expressing plasmid, pTrc-kan plasmid (constructed by Prof. Chang). pSB1C3-Dsr cut with MfeI and SPeI, pTrc-kan cut with EcoRI and XbaI. Finally we can get ~9800bp plasmid, pTrc-kan-Dsr gene. Enzyme check by BamHI, we can ~1200bp.
Biobrick of Dsr Sulfite Reductase
-
p