Team:Goettingen/Project

From 2012.igem.org

(Difference between revisions)
 
(64 intermediate revisions not shown)
Line 1: Line 1:
-
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" dir="ltr" lang="en"><head>
+
{{GoettingenHeader|deu=Team:Goettingen/Project_deu|eng=Team:Goettingen/Project}}
-
                <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
+
-
                                <meta name="keywords" content="Team:Goettingen,Team:Goettingen,Team:Goettingen/Homing coli,Team:Goettingen/Human Practice/Flash coli,Team:Goettingen/Press,Team:Goettingen/Project/General information">
+
-
                <link rel="shortcut icon" href="https://2012.igem.org/favicon.ico">
+
-
                <link rel="search" type="application/opensearchdescription+xml" href="https://2012.igem.org/wiki/opensearch_desc.php" title="2012.igem.org (English)">
+
-
                <link title="Creative Commons" type="application/rdf+xml" href="https://2012.igem.org/wiki/index.php?title=Team:Goettingen&amp;action=creativecommons" rel="meta">
+
-
<link rel="alternate" type="application/rss+xml" title="2012.igem.org RSS Feed" href="https://2012.igem.org/wiki/index.php?title=Special:Recentchanges&amp;feed=rss">
+
-
<link rel="alternate" type="application/atom+xml" title="2012.igem.org Atom Feed" href="https://2012.igem.org/wiki/index.php?title=Special:Recentchanges&amp;feed=atom">
+
-
 
+
== Our Project ==
-
<body class="mediawiki ns-0 ltr page-Team_Goettingen">
+
Our project was born from the idea to create a real champion: the fastest <i>E. coli</i> in the world. As funny as this may sound first,
-
 
+
soon we were at the development of an ambitious plan to create our "Homing Coli" and apply its speed for selective purposes.
-
 
+
The ultimate goal was a fast swimming <i>E. coli</i> strain which would be able to recognize specific molecules on a mutagenized
-
 
+
receptor and head towards gradients of these substances on swimming agar plates. If this approach worked, it might be put to use
-
 
+
for the recognition of various molecules such as pollutants, toxins or even cancer cell markers. As our planning moved on, we soon
-
                        <!-- start content -->
+
created three different focus groups which should work in parallel on the biggest and most crucial components of our project. <br>
-
 
+
-
 
+
-
 
+
-
<style>
+
-
h1.firstHeading { display: none; }
+
-
 
+
-
p {text-align: justify;}
+
-
 
+
-
a:link { color: #004080; text-decoration: none}
+
-
a:visited { color:##003090; text-decoration: none}
+
-
a:hover { color:#f29400; text-decoration: none}
+
-
a:active { color:#f29400; text-decoration: none}
+
-
 
+
-
#bodyContent { padding: 10px auto; width: 910px; margin: auto; clear: none; }
+
-
 
+
-
table#team_members { text-align: justify; border: 0; }
+
-
table#team_members h2, table#team_members h3 { clear: both; }
+
-
 
+
-
 
+
-
/*-----------------------------------------------------------------------------------------------*/
+
-
div.MenuBar ul li ul.DropDownMenu {
+
-
  display: none; /* Hides all drop-down menus. */
+
-
 
+
-
}
+
-
/*
+
-
li:hover works in IE7 and FF2.
+
-
a:hover works in IE6 and FF2.
+
-
a:hover breaks li:hover in FF2.
+
-
*/
+
-
div.MenuBar ul li:hover ul.DropDownMenu li ul.SideMenu,
+
-
div.MenuBar ul li a:hover ul.DropDownMenu li a ul.SideMenu {
+
-
  display: none; /* Hides all side menus. */
+
-
}
+
-
/*------------------------------------------------------------------------------------- Menu Bar */
+
-
div.MenuBar {
+
-
  font: Verdana;
+
-
  height: 30px;
+
-
  width: 910px;
+
-
  /*width: 100%*/
+
-
  margin: 0;
+
-
  border-top: 0;
+
-
  border-right: 0;
+
-
  border-left: 0;
+
-
  padding: 0;
+
-
  background: #0064C8;
+
-
 
+
-
}
+
-
div.MenuBar ul {
+
-
  font: Verdana;
+
-
  text-align: center;
+
-
  list-style-type: none;
+
-
  margin: 0 auto;
+
-
  border: 0;
+
-
  padding: 0;
+
-
  background: #0064C8;
+
-
}
+
-
div.MenuBar ul li {
+
-
  font: Verdana;
+
-
  display: block;
+
-
  padding: 0;
+
-
  margin: 0;
+
-
  font-size: 1.3em;
+
-
  float: left;
+
-
  background: #0064C8;
+
-
  text-align: center;
+
-
  width: 107px;
+
-
  position: relative; /* Sets the positioning context for each drop-down menu. */
+
-
}
+
-
 
+
-
div.MenuBar ul li a {
+
-
  font: Verdana;
+
-
  display: block;
+
-
  background: #0064C8;
+
-
  height: 22px; /* Keep height + padding-top + padding-bottom sync with the menu bar height. */
+
-
  color: white;
+
-
  padding-top: 4px;
+
-
  padding-bottom: 4px;
+
-
  padding-left: 1em; /* Sets the left space between top-level items. */
+
-
  padding-right: 1em; /* Sets the right space between top-level items. */
+
-
  text-decoration: none;
+
-
}
+
-
 
+
-
/*------------------------------------------------------------------------------ Drop-Down Menus */
+
-
div.MenuBar ul li:hover ul.DropDownMenu,
+
-
div.MenuBar ul li a:hover ul.DropDownMenu {
+
-
  display: block;
+
-
  width: 10em; /* Drop-down menu width.
+
-
                  Use MenuTailor.css to customize. */
+
-
  height: 1em;
+
-
  padding: 1px; /* Sets the drop-down menu "effective border" width. */
+
-
  position: absolute;
+
-
  top: 23px; /* Places the drop-down menu under the menu bar.
+
-
                Keep it sync with the menu bar height. */
+
-
  left: 0; /* Aligns the drop-down menu to its top-level item. */
+
-
  background-color: #A3C0E0; /* Selected item. */
+
-
  color: #FFFFFF;
+
-
 
+
-
}
+
-
div.MenuBar ul li:hover ul.DropDownMenu li a,
+
-
div.MenuBar ul li a:hover ul.DropDownMenu li a {
+
-
  width: 10em; /* Keep it sync with the drop-down menu width.
+
-
                            Use MenuTailor.css to customize. */
+
-
  height: 1em;
+
-
  padding-left: 0;
+
-
  padding-right: 0;
+
-
  background-color: #A3C0E0; /* Selected item. */
+
-
  color: #FFFFFF;
+
-
}
+
-
ul.DropDownMenu li a span {
+
-
  display: block;
+
-
  padding-left: 0.75em; /* Sets the left space of each drop-down menu item. */
+
-
  padding-right: 0.25em; /* Sets the right space of each drop-down menu item. */
+
-
  text-align: right; /* Aligns the >> symbol to the right. */
+
-
}
+
-
ul.DropDownMenu li a span span {
+
-
  float: left; /* Aligns the text (back) to the left. */
+
-
  font: 12px Verdana; /* Required for IE55. */
+
-
  height: 20px;
+
-
  color: #FFFFFF;
+
-
}
+
-
/*----------------------------------------------------------------------------------- Side Menus */
+
-
div.MenuBar ul li:hover ul.DropDownMenu li:hover ul.SideMenu,
+
-
div.MenuBar ul li a:hover ul.DropDownMenu li a:hover ul.SideMenu {
+
-
  display: block;
+
-
  width: 11em; /* Side menu width.
+
-
                  Use MenuTailor.css to customize. */
+
-
  padding: 1px; /* Sets the side menu "effective border" width. */
+
-
  position: absolute;
+
-
  top: -1px; /* Aligns the side menu to its drop-down menu item.
+
-
                Keep it sync with the side menu "effective border" width. */
+
-
  left: 13em; /* Places the side menu to the right of the drop-down menu.
+
-
                            Keep it sync with the drop-down menu width.
+
-
                            Use MenuTailor.css to customize. */
+
-
}
+
-
div.MenuBar ul li:hover ul.DropDownMenu li:hover ul.SideMenu li a,
+
-
div.MenuBar ul li a:hover ul.DropDownMenu li a:hover ul.SideMenu li a {
+
-
  width: 11em; /* Keep it sync with the side menu width.
+
-
                            Use MenuTailor.css to customize. */
+
-
  font: 12px Verdana; /* Required for IE55. */
+
-
  left: 13em; /* Places the side menu to the right of the drop-down menu.
+
-
                            Keep it sync with the drop-down menu width.
+
-
                            Use MenuTailor.css to customize. */
+
-
}
+
-
div.MenuBar ul li ul.DropDownMenu li ul.SideMenu li a span {
+
-
  padding-left: 1.5em; /* Sets the left space of each side menu item. */
+
-
  padding-right: 0.5em; /* Sets the right space of each side menu item. */
+
-
  text-align: left;
+
-
  font: 12px Verdana; /* Required for IE55. */
+
-
  left: 13em; /* Places the side menu to the right of the drop-down menu.
+
-
                            Keep it sync with the drop-down menu width.
+
-
                            Use MenuTailor.css to customize. */
+
-
}
+
-
/*----------------------------------------------------------------------------- Browser Specific */
+
-
* html div.MenuBar ul li a {
+
-
  float: left; /* Required for IE55 and IE6.
+
-
                            Breaks O9.
+
-
                            Hidden (* html) from non-IE browsers. */
+
-
}
+
-
* html ul.DropDownMenu li a:hover {
+
-
  cursor: hand; /* Required for IE55.
+
-
                  Hidden (* html) from non-IE browsers. */
+
-
}
+
-
ul.DropDownMenu li a:hover {
+
-
  cursor: pointer; /* Required for IE6 and IE7.
+
-
                      Hidding it (* html) from non-IE browsers breaks IE7!
+
-
}
+
-
* html div.MenuBar a:hover {
+
-
  text-decoration: none; /* Required for IE55 and IE6.
+
-
                            Hidden (* html) from non-IE browsers. */
+
-
}
+
-
* html div.MenuBar ul li table,
+
-
* html div.MenuBar ul li table td {
+
-
  border: 0; /* Required for IE55 and IE6.
+
-
                Hidden (* html) from non-IE browsers. */
+
-
}
+
-
/*------------------------------------------------------------------------------- Default Colors */
+
-
div.MenuBar {
+
-
  background-color: Menu;
+
-
  border-bottom: 1px solid ButtonShadow;
+
-
}
+
-
div.MenuBar a {
+
-
  background-color: Menu; /* Top-level unselected items. */
+
-
  color: MenuText;
+
-
}
+
-
div.MenuBar ul li:hover a,
+
-
div.MenuBar ul li a:hover {
+
-
  color: #A3C0E0;
+
-
  background-color: Highlight; /* Top-level selected item. */
+
-
  color: HighlightText;
+
-
}
+
-
/*...............................................................................................*/
+
-
div.MenuBar ul li:hover ul.DropDownMenu,
+
-
div.MenuBar ul li a:hover ul.DropDownMenu {
+
-
  background-color: ButtonShadow; /* Sets the drop-down menu "effective border" color. */
+
-
}
+
-
div.MenuBar ul li:hover ul.DropDownMenu li a,
+
-
div.MenuBar ul li a:hover ul.DropDownMenu li a {
+
-
  background-color: Menu;  Drop-down menu unselected items.
+
-
                            Sets the drop-down menu "effective background" color. */
+
-
  color: MenuText;
+
-
}
+
-
div.MenuBar ul li:hover ul.DropDownMenu li:hover a,
+
-
div.MenuBar ul li a:hover ul.DropDownMenu li a:hover {
+
-
  background-color: Highlight; /* Drop-down menu selected item. */
+
-
  color: HighlightText;
+
-
}
+
-
/*...............................................................................................*/
+
-
div.MenuBar ul li:hover ul.DropDownMenu li:hover ul.SideMenu,
+
-
div.MenuBar ul li a:hover ul.DropDownMenu li a:hover ul.SideMenu {
+
-
  background-color: ButtonShadow; /* Sets the side menu "effective border" color. */
+
-
}
+
-
div.MenuBar ul li:hover ul.DropDownMenu li:hover ul.SideMenu li a,
+
-
div.MenuBar ul li a:hover ul.DropDownMenu li a:hover ul.SideMenu li a {
+
-
  background-color: Menu; /* Side menu unselected items.
+
-
                            Sets the side menu "effective background" color. */
+
-
  color: MenuText;
+
-
}
+
-
div.MenuBar ul li:hover ul.DropDownMenu li:hover ul.SideMenu li a:hover,
+
-
div.MenuBar ul li a:hover ul.DropDownMenu li a:hover ul.SideMenu li a:hover {
+
-
  background-color: Highlight; /* Side menu selected item. */
+
-
  color: HighlightText;
+
-
}
+
-
/*-----------------------------------------------------------------------------------------------*/
+
-
/*Script-Free 3-Level Menu 1.2 Tailor
+
-
  www.CesarDaniel.info
+
-
/*-------------------------------------------------------------------------------------- General */
+
-
body {
+
-
  background: white;
+
-
  color: black;
+
-
  margin: 0;
+
-
  border: 0;
+
-
  padding: 0;
+
-
}
+
-
 
+
-
 
+
-
div.MenuBar {
+
-
  font: 13px arial, helvetica, sans-serif;
+
-
}
+
-
div.MenuBar ul {
+
-
  font: 13px arial, helvetica, sans-serif; /* Required for IE55. */
+
-
}
+
-
/*--------------------------------------------------------------------------------------- Colors */
+
-
div.MenuBar {
+
-
  background-color: #0064C8; /* Selected item. */
+
-
  color: #FFFFFF;
+
-
  border-bottom: 1px solid ButtonShadow;
+
-
}
+
-
div.MenuBar a,
+
-
div.MenuBar ul li:hover ul.DropDownMenu li a,
+
-
div.MenuBar ul li a:hover ul.DropDownMenu li a,
+
-
div.MenuBar ul li:hover ul.DropDownMenu li:hover ul.SideMenu li a,
+
-
div.MenuBar ul li a:hover ul.DropDownMenu li a:hover ul.SideMenu li a {
+
-
  background-color: #0064C8; /* Selected item. */
+
-
  color: #FFFFFF;
+
-
}
+
-
div.MenuBar ul li:hover a,
+
-
div.MenuBar ul li a:hover,
+
-
div.MenuBar ul li:hover ul.DropDownMenu li:hover a,
+
-
div.MenuBar ul li a:hover ul.DropDownMenu li a:hover,
+
-
div.MenuBar ul li:hover ul.DropDownMenu li:hover ul.SideMenu li a:hover,
+
-
div.MenuBar ul li a:hover ul.DropDownMenu li a:hover ul.SideMenu li a:hover {
+
-
  background-color: #A3C0E0; /* Selected item. */
+
-
  color: #FFFFFF;
+
-
}
+
-
div.MenuBar ul li:hover ul.DropDownMenu,
+
-
div.MenuBar ul li a:hover ul.DropDownMenu,
+
-
div.MenuBar ul li:hover ul.DropDownMenu li:hover ul.SideMenu,
+
-
div.MenuBar ul li a:hover ul.DropDownMenu li a:hover ul.SideMenu {
+
-
  background-color: ButtonShadow; /* Sets the drop-down and side menus "effective border" color. */
+
-
}
+
-
/*--------------------------------------------------------------------------------------- Widths */
+
-
/*
+
-
 
+
-
/*
+
-
Menu Bar 1
+
-
Drop-Down Menu #2
+
-
*/
+
-
div.MenuBar#navi ul li:hover ul.DropDownMenu#MB1-DDM4,
+
-
div.MenuBar#navi ul li a:hover ul.DropDownMenu#MB1-DDM4,
+
-
div.MenuBar#navi ul li:hover ul.DropDownMenu#MB1-DDM4 li a,
+
-
div.MenuBar#navi ul li a:hover ul.DropDownMenu#MB1-DDM4 li a {
+
-
  width: 11em; /* Drop-down menu width. */
+
-
}
+
-
div.MenuBar#navi ul li:hover ul.DropDownMenu#MB1-DDM5,
+
-
div.MenuBar#navi ul li a:hover ul.DropDownMenu#MB1-DDM5,
+
-
div.MenuBar#navi ul li:hover ul.DropDownMenu#MB1-DDM5 li a,
+
-
div.MenuBar#navi ul li a:hover ul.DropDownMenu#MB1-DDM5 li a {
+
-
  width: 12em; /* Drop-down menu width. */
+
-
}
+
-
 
+
-
/*...............................................................................................*/
+
-
/*
+
-
Menu Bar 1
+
-
Drop-Down Menu #2
+
-
Side Menu #1
+
-
*/
+
-
div.MenuBar#navi ul li:hover ul.DropDownMenu li:hover ul.SideMenu#MB1-DDM2-SM1,
+
-
div.MenuBar#navi ul li a:hover ul.DropDownMenu li a:hover ul.SideMenu#MB1-DDM2-SM1 {
+
-
  left: 15.5em !important; /* Places the side menu to the right of the drop-down menu.
+
-
                            Keep it sync with the drop-down menu width. */
+
-
}
+
-
div.MenuBar#navi ul li:hover ul.DropDownMenu li:hover ul.SideMenu#MB1-DDM2-SM1,
+
-
div.MenuBar#navi ul li a:hover ul.DropDownMenu li a:hover ul.SideMenu#MB1-DDM2-SM1,
+
-
div.MenuBar#navi ul li:hover ul.DropDownMenu li:hover ul.SideMenu#MB1-DDM2-SM1 li a,
+
-
div.MenuBar#navi ul li a:hover ul.DropDownMenu li a:hover ul.SideMenu#MB1-DDM2-SM1 li a {
+
-
  width: 10em; /* Side menu width. */
+
-
}
+
-
/*...............................................................................................*/
+
-
/*
+
-
Menu Bar 1
+
-
Drop-Down Menu #2
+
-
Side Menu #2
+
-
*/
+
-
div.MenuBar#navi ul li:hover ul.DropDownMenu li:hover ul.SideMenu#MB1-DDM2-SM2,
+
-
div.MenuBar#navi ul li a:hover ul.DropDownMenu li a:hover ul.SideMenu#MB1-DDM2-SM2 {
+
-
  left: 15.5em  !important; /* Places the side menu to the right of the drop-down menu.
+
-
                            Keep it sync with the drop-down menu width. */
+
-
}
+
-
div.MenuBar#navi ul li:hover ul.DropDownMenu li:hover ul.SideMenu#MB1-DDM2-SM2,
+
-
div.MenuBar#navi ul li a:hover ul.DropDownMenu li a:hover ul.SideMenu#MB1-DDM2-SM2,
+
-
div.MenuBar#navi ul li:hover ul.DropDownMenu li:hover ul.SideMenu#MB1-DDM2-SM2 li a,
+
-
div.MenuBar#navi ul li a:hover ul.DropDownMenu li a:hover ul.SideMenu#MB1-DDM2-SM2 li a {
+
-
  width: 10em; /* Side menu width. */
+
-
}
+
-
/*...............................................................................................*/
+
-
/*
+
-
Menu Bar 1
+
-
Drop-Down Menu #2
+
-
Side Menu #3
+
-
*/
+
-
div.MenuBar#navi ul li:hover ul.DropDownMenu li:hover ul.SideMenu#MB1-DDM2-SM3,
+
-
div.MenuBar#navi ul li a:hover ul.DropDownMenu li a:hover ul.SideMenu#MB1-DDM2-SM3 {
+
-
  left: 15.5em  !important; /* Places the side menu to the right of the drop-down menu.
+
-
                            Keep it sync with the drop-down menu width. */
+
-
}
+
-
div.MenuBar#navi ul li:hover ul.DropDownMenu li:hover ul.SideMenu#MB1-DDM2-SM3,
+
-
div.MenuBar#navi ul li a:hover ul.DropDownMenu li a:hover ul.SideMenu#MB1-DDM2-SM3,
+
-
div.MenuBar#navi ul li:hover ul.DropDownMenu li:hover ul.SideMenu#MB1-DDM2-SM3 li a,
+
-
div.MenuBar#navi ul li a:hover ul.DropDownMenu li a:hover ul.SideMenu#MB1-DDM2-SM3 li a {
+
-
  width: 10em; /* Side menu width. */
+
-
}
+
-
/*...............................................................................................*/
+
-
 
+
-
</style>
+
-
 
+
-
 
+
-
 
+
-
</p><div id="header"><img src="http://www.patrickreinke.de/igem/header.jpg" alt="Team Goettingen"></div>
+
-
<div class="MenuBar" id="navi">
+
-
        <ul>
+
-
                <li>
+
-
                        <a href="https://2012.igem.org/Team:Goettingen" style="color: white;">Home
+
-
                        <!--[if gt IE 6]><!--></a><!--<![endif]-->
+
-
                        <!--[if lt IE 7]><table border="0" cellpadding="0" cellspacing="0"><tr><td><![endif]-->
+
-
                        <!--[if lte IE 6]></td></tr></table></a><![endif]-->
+
-
                </li>
+
-
                <li>
+
-
                        <a href="https://2012.igem.org/Team:Goettingen/Team" style="color: white;">Team<!--[if gt IE 6]><!--></a><!--<![endif]-->
+
-
                        <!--[if lt IE 7]><table border="0" cellpadding="0" cellspacing="0"><tr><td><![endif]-->
+
-
                        <ul class="DropDownMenu" id="MB1-DDM6">
+
-
                        <li><a href="https://2012.igem.org/Team:Goettingen/Team"><span><span>Team members</span></span></a></li>
+
-
                        <li><a href="https://2012.igem.org/Team:Goettingen/Team#advisor"><span><span>Advisors</span></span></a></li>
+
-
                        <li><a href="https://2012.igem.org/Team:Goettingen/Team#alicia"><span><span>Students</span></span></a></li>
+
-
                        <li><a href="https://2012.igem.org/Team:Goettingen/Work_Impressions"><span><span>Work impressions</span></span></a></li>
+
-
                        </ul>
+
-
                        <!--[if lte IE 6]></td></tr></table></a><![endif]-->
+
-
                </li>
+
-
                <li>
+
-
                        <a href="https://2012.igem.org/Team:Goettingen/Project" style="color: white;">Project<!--[if gt IE 6]><!--></a><!--<![endif]-->
+
-
                        <!--[if lt IE 7]><table border="0" cellpadding="0" cellspacing="0"><tr><td><![endif]-->
+
-
                        <ul class="DropDownMenu" id="MB1-DDM1">
+
-
                        <li><a href="https://2012.igem.org/Team:Goettingen/Project"><span><span>Our project</span></span></a></li>
+
-
                        <li><a href="https://2012.igem.org/Team:Goettingen/Material"><span><span>Material &amp; Methods</span></span></a>
+
-
                  </li><li><a href="https://2012.igem.org/Team:Goettingen/Chemotaxis"><span><span>Chemotaxis</span></span></a></li>
+
-
                        </ul>
+
-
                        <!--[if lte IE 6]></td></tr></table></a><![endif]-->
+
-
                </li>
+
-
 
+
-
                <li>
+
-
                        <a href="https://2012.igem.org/Team:Goettingen/Notebook" style="color: white;">Notebook<!--[if gt IE 6]><!--></a><!--<![endif]-->
+
-
                        <!--[if lt IE 7]><table border="0" cellpadding="0" cellspacing="0"><tr><td><![endif]-->
+
-
                                <ul class="DropDownMenu" id="MB1-DDM2">
+
-
                                <li><a href="https://2012.igem.org/Team:Goettingen/Notebook"><span><span>Notebook by month</span></span></a></li>
+
-
                                <li><a href="https://2012.igem.org/Team:Goettingen/Notebook#week"><span><span>Notebook by week</span></span></a></li>
+
-
                                </ul>
+
-
                                <!--[if lte IE 6]></td></tr></table></a><![endif]-->
+
-
                </li>
+
-
                <li>
+
-
                        <a href="https://2012.igem.org/Team:Goettingen/iGEM" style="color: white;">iGEM<!--[if gt IE 6]><!--></a><!--<![endif]-->
+
-
                        <!--[if lt IE 7]><table border="0" cellpadding="0" cellspacing="0"><tr><td><![endif]-->
+
-
                                <ul class="DropDownMenu" id="MB1-DDM4">
+
-
                                <li><a href="https://2012.igem.org/Team:Goettingen/Saftey"><span><span>Saftey</span></span></a></li>
+
-
 
+
-
                                <li><a href="https://2012.igem.org/Team:Goettingen/Attributions"><span><span>Attributions</span></span></a></li>
+
-
                                </ul>
+
-
                                <!--[if lte IE 6]></td></tr></table></a><![endif]-->
+
-
                </li>
+
-
                <li>
+
-
                        <a href="https://2012.igem.org/Team:Goettingen/Modeling" style="color: white;">Modeling<!--[if gt IE 6]><!--></a><!--<![endif]-->
+
-
                        <!--[if lt IE 7]><table border="0" cellpadding="0" cellspacing="0"><tr><td><![endif]-->
+
-
                                <ul class="DropDownMenu" id="MB1-DDM5">
+
-
                                <li><a href="https://2012.igem.org/Team:Goettingen/Modeling"><span><span>Modeling</span></span></a></li>
+
-
                                <li><a href="https://2012.igem.org/Team:Goettingen/Parts"><span><span>Parts Submitted</span></span></a></li>
+
-
                        <!--[if lt IE 7]><table border="0" cellpadding="0" cellspacing="0"><tr><td><![endif]-->
+
-
                                        <!--[if lte IE 6]></td></tr></table></a><![endif]-->
+
-
                                </li>
+
-
 
+
-
                                </ul>
+
-
                                <!--[if lte IE 6]></td></tr></table></a><![endif]-->
+
-
                </li>
+
-
                <li style="width: 160px">
+
-
                        <a href="https://2012.igem.org/Team:Goettingen/Human_Practice/Human_practice" style="color: white;">Human Practice<!--[if gt IE 6]><!--></a><!--<![endif]-->
+
-
                        <!--[if lt IE 7]><table border="0" cellpadding="0" cellspacing="0"><tr><td><![endif]-->
+
-
                                <ul class="DropDownMenu" id="MB1-DDM2-SM3">
+
-
                              <li><a href="https://2012.igem.org/Team:Goettingen/Human_Practice/Human_practice"><span><span>Human Practice</span></span></a></li>
+
-
                              <li><a href="https://2012.igem.org/Team:Goettingen/Human_Practice/Flash_coli"><span><span>Flash Coli</span></span></a></li>
+
-
 
+
-
 
+
-
                                </ul>
+
-
                                <!--[if lte IE 6]></td></tr></table></a><![endif]-->
+
-
                </li>
+
-
 
+
-
                <li>
+
-
                        <a href="https://2012.igem.org/Team:Goettingen/Sponsors" style="color: white;">Sponsors</a>
+
-
                </li>
+
-
        </ul>
+
-
 
+
-
</div>
+
-
 
+
-
 
+
-
<p></p>
+
-
<table>
+
-
                                <!-- Text body -->
+
-
<tbody><tr valign="top" align="left">
+
-
 
+
-
<td style="padding: 0pt 20px 0pt 0pt;" width="650px">
+
-
<font face="Verdana" size="-1">
+
-
<h2><b>Welcome to iGEM Göttingen</b></h2>
+
-
 
+
-
<p align="justify" style="line-height:1.6em">
+
-
iGEM is a international competition hosted by the MIT in Boston, USA, for undergraduate students
+
-
of disciplines related to molecular biology. iGEM stands for International Genetically Engineered
+
-
Machine competition. One the one hand, it targets to combine aspects of education and social
+
-
collaboration among undergraduate students, on the other hand, it provides a library for
+
-
standardized and interchangeable parts which can be used in living systems, particularly
+
-
in model organisms like E. coli. Student groups from all over the world will receive a
+
-
requested kit of biological parts, also called "biobricks", and work over the summer on
+
-
an individual research project. Every year, the "Registry of Standard Biological Parts"
+
-
is upgraded with further biobricks by the participating iGEM teams. These biobricks will
+
-
be accessible to the iGEM community in the following years in order to use these parts for
+
-
their own projects.  <br>
+
<br>
<br>
-
 
+
The first group focuses on the creation of effective swimming motility assays. All kinds of different media and swimming agar
-
The iGEM competition started in 2003 as a course for students of the MIT only. 2011,
+
plates were to be tested, because fast <i>E. coli</i> can only show their potential under the right conditions. Furthermore, an
-
already 165 universities from all over the world competed against each other. This year,
+
efficient selection system should be created in order to separate the fast <i>E. coli</i> from the slower ones and to test potential
-
it is the first participation of University of Goettingen, Germany. The iGEM competition
+
attractants for our swimmers.<br>
-
is a great opportunity for students to gain and improve a multitude of skills that are
+
-
necessary during a carrier as a molecular biologist. Such skills would be planning and
+
-
organizing a project, including fund raising and team recruitment, coordination of lab
+
-
work, designing experiments and working together as a team. Next to intensive lab work
+
-
during the summer, also literature search and well-structured documentation of the
+
-
experiments is crucial.<br>
+
-
 
+
-
 
+
-
 
+
-
</p>
+
-
 
+
<br>
<br>
-
 
+
Creation of a fast strain represents the main task for the second group. The main question here is: which genes have the potential
-
<h2><b>Homing Coli</b></h2>
+
to make our <i>E. coli</i> faster and how do they need to be regulated to achieve this? Naturally, genes that code for parts of
-
 
+
the bacterial motor, the flagellum, were selected for testing as well as FlhDC, a master regulator for motility and chemotaxis.
-
<p align="justify" style="line-height:1.6em">
+
The output is then measured as motility on the first group's swimming plates. <br>
-
 
+
-
<i>Escherichia coli</i> is a commonly used bacterial model organism. It has lots of beneficial
+
-
traits like a short generation time and it can be easily manipulated. Most <i>E. coli</i>
+
-
strains that are used in laboratories do not exhibit high motility. The crucial element for
+
-
motility is the flagellum, which is rotated by a molecular motor within the cell wall.
+
-
Consequently, these are reduced in cultivated <i>E. coli</i> strains.<br>
+
<br>
<br>
-
Our goal is to create an <i>E. coli</i> strain with increased swarming motility on special
+
The last group focuses on the directed mutagenesis of the aspartate receptor Tar. Thereby, a library of numerous different and new Tar
-
agar plates. Therefore, we will perform directed mutagenesis techniques of motile <i>E. coli</i>
+
receptors can be created. Some of these might exhibit the ability to recognize a specific substance of interest. <i>E. coli</i>
-
and enhance their swarming ability. The fastest <i>E. coli</i> strains will be selected and
+
strains possessing such mutated receptors can then be screened for homing ability towards a selection of chemical compounds. <br>
-
further improved. At the same time we will then be able to create an effective motility-selection
+
-
  method.         <br>
+
<br>
<br>
-
Now, you are probably wondering what the advantage of a fast<i> E. coli</i> might be. The
+
These three groups would focus mostly on their separate projects during the early phases of lab-work and also plan their schedules
-
beneficial fast phenotype can be combined with the ability of this bacterium to sense
+
independently to minimize frictional losses. But as time progresses and the first results are obtained the work of our focus groups
-
specific compounds in their environments. Chemo-receptors enable it to move towards
+
overlaps more and more in order to achieve our ultimate goal: the creation of Homing Coli.<br>
-
or along gradients of such substances. The combination of speed and chemotaxis allows
+
-
us to identify <i>E. coli</i> strains, which can find interesting compounds. Thereby, an
+
-
easy method for the detection of pollutants, toxins or even tumors could be provided.<br><br>
+
-
 
+
-
<img width="400 px" src="http://www.patrickreinke.de/igem/homingcoli.jpg">
+
-
</p>
+
-
 
+
<br>
<br>
-
<h2><b>Synthetic Biology</b></h2>
+
== Chemotaxis ==
 +
===Sensing and the mechanism of chemotaxis===
 +
Chemotaxis is a phenomenon whereby cells or organisms direct their orientation or movement in relation to a gradient of
 +
chemical agents (Fig 1). These chemical agents are known as chemoattractants and chemorepellants, which are inorganic or
 +
organic substances like amino acids and sugars. They are able to activate chemotaxis in motile cells. This chemotaxis behavior is
 +
triggered by binding of chemoattractants or chemorepellants to chemotaxis receptors such as the target of our iGEM project, the aspartate receptor Tar.
-
<p align="justify" style="line-height:1.6em">
+
[[File:Goe_chemo1.png|700px|thumb|center|<b>Figure 1: Chemotaxis of <i>E. coli</i>.</b> (a) When no attractant is present <i>E. coli</i> switches from direct swimming to tumbling randomly. (b) In the presence of an attractant <i>E. coli</i> moves through the gradient in the direction of the attractant. (Attractant gradient is shown in green.) ]]
-
Synthetic biology is an interdisciplinary scientific area that has recently developed.
+
-
It links various fields of science like biology, chemistry, physics, molecular genetics,
+
-
informatics and engineering.<br>
+
-
<br>
+
 +
Chemotaxis is based on high-order intracellular signaling structures.
 +
Clustered receptors in the cell wall of bacteria sense signals and mediate downstream signaling in the cell via associated
 +
proteins in a highly cooperative manner [2]. These high-order intracellular signaling structures are also known as two-component systems.
-
Due to this combination the relation of biological design and function can be investigated
+
[[File:Goe_chemo2neu.jpg|250px|thumb|<b>Figure 2: Schematic structure of a two-component system.</b> A histidine kinase (HK) serves as sensing structure for
-
from an entirely new perspective. The previous approach was limited to the examination of
+
attractants or repellents and mediates downstream signaling to autokinase (red). The response regulator (RR) consists of a receiver
-
a structure and its function and the attempt to explain how they correlate.
+
(purple) and an output module (green) which if activated induces gene expression [2].]]
-
Recently, the reverse strategy is applied. Biological parts are specifically designed and
+
-
constructed according to a desired function. These parts are characterized by a standardized
+
-
modular design that facilitates their handling. The subsequent introduction of the synthetic
+
-
constructs to living cells can either cause the replacement of original cellular components
+
-
or result in additional elements that act cooperatively or more or less autonomously.<br>
+
-
<br>
+
-
<img src="http://www.patrickreinke.de/igem/synbio.jpg">
+
-
<br>
+
-
Nagarajan Nandagopal and Michael B. Elowitz. (2011). Synthetic Biology: Integrated
+
-
Gene Circuits. SCIENCE, Vol. 333: 1244-1248.<br>
+
-
<br>
+
-
Another very important and necessary feature of biological parts is orthogonality,
+
-
which means in this context that independent devices can be combined unrestrictedly.
+
-
  This principle derives from the area of engineering and aims to alter subsystems,
+
-
  without impeding others.<br>
+
-
<br>
+
-
This way cells can be modified as requested, resulting in a predictable behaviour.
+
-
Among others, this technique can be beneficial for the effective production of
+
-
certain substances, like biofuels or antibiotics.
+
 +
A two-component system consists of a sensory histidine kinase and a phosphorylable
 +
response regulator [2] (Fig 1). Transfer of the phosphate group from a histidine residue of the kinase domain to an aspartate
 +
residue of the response regulator activates the output domain. This normally results in activation of gene expression. <br><br>
 +
Beside the aspect that the sensing in <i>E. coli</i> is coupled to flagella-based motion, the two-component system is more complex.
 +
There are five histidine-kinase-associated chemotaxis receptors of <i>E. coli</i> known. The receptors are typically arranged as
 +
a trimeric application of dimeric receptor subunits (trimers of dimers) that are spanning through the membrane.
 +
The receptors are methyl-accepting chemotaxis proteins (MCPs) that are directly associated with CheA, a histidine autokinase
 +
and CheW, an adaptor protein that couples CheA to the receptor protein. <br>
 +
There are two conformational states of receptor kinases possible: the kinase-on and kinase-off state [3]. In kinase-off state the
 +
counter-clockwise (CCW) rotation is active, which leads to forward swimming. In the kinase-on state CheA autophosphorylation is
 +
activated due to repellent binding whereas in the kinase-off state autophosphorylation is inactive due to attractant binding (Fig 3). <br><br>
 +
In the case of kinase-on state, the autophosphorylated CheA transfers a phosphate group to one of the two response regulators,
 +
CheY and CheB.CheY is responsible for motor control by binding to the flagellar rotary motor. This results in clockwise (CW) rotation,
 +
which is visible as random directional movement. CheZ, a phosphatase, dephosphorylates CheY to keep random movement low (Fig 3). <br><br>
 +
The methylesterase CheB and methyltransferase CheR are counterplayers in sensory adaptation. Here, the MCPs play a crucial role.
 +
Both MCP sites have glutamines in their structure. These are functional mimics of methyl glutamates. In the case of CheB
 +
is bound to a phosphate group from CheA, it mediates deamidation of glutamines to methyl-accepting glutamates. Therefore the
 +
receptor is in the off-state with a high attractant affinity and it is likely to be methylated but not demethylated [3]. Because
 +
the kinetics of methylation and demethylation are relatively slow, adaptation can take tens to hundreds of seconds [2].<br><br>
 +
All in all, <i>E. coli</i> switches from tumbling to swimming when it is surrounded by a gradient of attractants. Increased
 +
attractant stimulation results in both, terminating tumbling and activation of swimming towards the attractants [2].<br>
-
</p>
+
[[File:Goe_chemo3.png|500px|thumb|center|<b>Figure 3: Molecular mechanism of tumbling and swimming.</b> Activated CheA transfers a phosphate group to CheY
-
<br>
+
thus activating clockwise (CW) rotation which leads <i>E. coli</i> tumble. CheZ dephosphorylates CheY to activate counter-clockwise
-
<br>
+
(CCW) flagella rotation that results in swimming.]]
-
<table bordercolor="black" border="1 px" width="600 px"><tr><td>
+
[[File:Goe_chemo4.png|500px|thumb|center|<b>Figure 4: Structure of <i>E. coli</i> chemoreceptor Tar.</b> Left: Ribbon diagram and chematic show of the 3D structure of Tar [3].
-
<b>Important pages</b>:<br>
+
Right: Detail view of the 3D structure ligand binding domain of Tar (PDB file: 1WAT).]]
-
<a href="https://2012.igem.org/Team:Goettingen">Home</a>;
+
-
<a href="https://2012.igem.org/Team:Goettingen/Team">Team</a>;
+
-
<a href="https://igem.org/Team.cgi?year=2012">Official Team Profile</a>;
+
-
<a href="https://2012.igem.org/Team:Goettingen/Project">Project</a>;
+
-
<a href="https://2012.igem.org/Team:Goettingen/Parts">Parts submitted to the Registry</a>;
+
-
<a href="https://2012.igem.org/Team:Goettingen/Modeling">Modeling</a>;
+
-
<a href="https://2012.igem.org/Team:Goettingen/Notebook">Notebook</a>;
+
-
<a href="https://2012.igem.org/Team:Goettingen/Saftey">Saftey</a>;
+
-
<a href="https://2012.igem.org/Team:Goettingen/Attributions">Attributions</a>
+
-
</td></tr>
+
-
</table>
+
 +
===Tar chemoreceptor of <i>E. coli</i>===
 +
The aspartate receptor Tar (taxis to aspartate and repellents) is one member of five classical methyl-accepting chemotaxis proteins
 +
in <i>E. coli</i> (Aer, Tar, Tsr, Trg and Tap) that mediate chemotactic response. The whole chemoreceptor is build of three parts:
 +
a transmembrane sensing domain, a signal conversion domain and a kinase control domain (Fig 4). The transmembrane sensing domain of
 +
Tar is a four helix bundle where one bundle consists of two antiparallel helices [3]. <br><br>
 +
Tar is able to sense aspartate in a high sensitive manner and a lower sensitivity for glutamate and other compounds is
 +
known [3]. The ligand binding site involves some aminoacid residues of four helices. Binding of the ligand causes a
 +
conformational change. The signal is then transmitted across the membrane through the signal conversion domain to the
 +
kinase control domain (Koshland <i>et al.</i>, 2001) which leads to flagellar motion.<br><br>
 +
=== Sensory molecules ===
 +
Sensory molecules are organic or inorganic agents that can be divided into two groups: chemoattractants and chemorepellents.
 +
Chemoattractants are molecules like aminoacids, organic or inorganic acids, small peptides or chemokines. They induce the active
 +
motion of the bacteria towards the highest concentration of the attractant (Fig 5).
 +
Chemorepellents have a danger signaling function. If bacteria recognize repellents, they swim away from the source of repellents (Fig 5). <br><br>
 +
Sensory molecules can be recognized by various receptors. <i>E. coli</i> has five of these receptors: Aer for sensing
 +
oxygen, Tar for sensing aspartate and repellents, Tsr for sensing serine and repellents, Trg for sensing ribose and galactose
 +
and Tap for sensing dipeptides. Receptors are able to mediate taxis to other sensory molecules as well but with lower affinity.
 +
Therefore, we try to find new recpetors by mutagenesis of the sensory molecule binding site of Tar.
 +
[[File:Goe_chemo5.png|800px|thumb|center|<b>Figure 5: Reaction of <i>E. coli</i> to chemoattractants and chemorepellents.</b> <i>E. coli</i> swims
 +
towards the highest concentration of the chemoattractant or away from the highest concentration of the chemorepellent.]]
-
 
+
Sources:<br>
-
 
+
[1] Madigan M. T., Martinko J. M., Stahl D. A., Clark D. P. (2012). Brock Microbiology. Vol. 13. Pearson, San Francisco, 78 – 80<br>
-
 
+
[2] Sourjik V., Armitage J. P. (2010). Spatial organization in bacterial chemotaxis. EMBO J. 29:16, 2724 - 2733<br>
-
</font>
+
[3] Hazelbauer G. L., Falke J. J., Parkinson J. S. (2008). Bacterial chemoreceptors: high-performance signaling in networked arrays. Trends Biochem Sci. 33:1, 9 - 19<br>
-
                                <!-- Text body zu Ende -->
+
-
 
+
-
                                <!-- News body anfang -->
+
-
</td><td width="250px">
+
-
<p>
+
-
</p>
+
-
 
+
-
<p>
+
-
<embed src="http://www.patrickreinke.de/igem/motionflashcoli.swf" type="application/x-shockwave-flash" pluginspage="http://www.macromedia.com/go/getflashplayer" wmode="transparent" height="180" width="240">
+
-
<font face="Verdana" size="-1">Explore our Project with Flash Coli
+
-
<a href="https://2012.igem.org/Team:Goettingen/Flashcoli">Click here</a>
+
-
</font></p>
+
-
<br><hr>
+
-
<p>
+
-
</p><p>
+
-
<font face="Verdana" size="-1">
+
-
 
+
-
 
+
-
 
+
-
</p>
+
-
<!-- News cap -->
+
-
<h2> <span><b>News</b></span></h2>
+
-
<!-- News cap end -->
+
-
 
+
-
        <!-- News 1 --> <br>
+
-
 
+
-
<p align="left"><i>04 May 2012,</i>  <b>KWS SAAT AG is now headsponsor</b>
+
-
</p>
+
-
<div><div><span><a href="https://2012.igem.org/Image:Igem_hd_pic.JPG" class="image"></a></span></div></div>
+
-
<p align="left">
+
-
The IGEM-Göttingen Team is happy to welcome the <a href="http://www.kws.de/">KWS SAAT AG</a> as head sponsor!
+
-
For more informations click <a href="https://2012.igem.org/Team:Goettingen/Sponsors" title="Team:Goettingen/Sponsors">
+
-
here</a>.
+
-
<center><img width="150 px" src="http://www.patrickreinke.de/igem/kws.png"></center>
+
-
        <!-- News 1 end-->
+
-
<br><hr>
+
-
 
+
-
        <!-- News 2 -->  <br>
+
-
 
+
-
</p><p><i>04 April. 2012,</i>    <b> Sartorius AG is now Sponsor</b>
+
-
</p>
+
-
<p>
+
-
</p><p>The first sponsor of our IGEM Team is the company <a href="http://www.sartorius.com">Sartorius AG</a>. More informations about our
+
-
sponsors are <a href="https://2012.igem.org/Team:Goettingen/Sponsors" title="Team:Goettingen/Sponsors">
+
-
here</a>..
+
-
<center><img width="250 px" src="http://www.patrickreinke.de/igem/sartorius.png"></center>
+
-
        <!-- News 2 end-->
+
<br>
<br>
 +
== Poster ==
-
<br>
+
http://www.patrickreinke.de/igem/poster.png<br>
-
 
+
-
<!-- News sponsor -->
+
-
<hr><h2> <span><b>Sponsors</b></span></h2>
+
-
 
+
-
 
+
-
<a href="http://www.kws.com"><center><img width="150 px" src="http://www.patrickreinke.de/igem/kws.png"></center></a> <br><br>
+
-
<br>
+
-
<a href="http://www.sartorius.com"><center><img width="250 px" src="http://www.patrickreinke.de/igem/sartorius.png"></center></a>
+
-
<hr><!-- News sponsor end -->
+
-
 
+
-
                                <!-- News body Ende -->
+
-
 
+
-
 
+
-
</font></td></tr></tbody></table></div>
+
{{GoettingenFooter}}
-
</td></tr>
+
-
</table>
+
-
</body>
+
-
</html>
+

Latest revision as of 14:48, 21 September 2012

Deutsch  / English 

Contents

Our Project

Our project was born from the idea to create a real champion: the fastest E. coli in the world. As funny as this may sound first, soon we were at the development of an ambitious plan to create our "Homing Coli" and apply its speed for selective purposes. The ultimate goal was a fast swimming E. coli strain which would be able to recognize specific molecules on a mutagenized receptor and head towards gradients of these substances on swimming agar plates. If this approach worked, it might be put to use for the recognition of various molecules such as pollutants, toxins or even cancer cell markers. As our planning moved on, we soon created three different focus groups which should work in parallel on the biggest and most crucial components of our project.

The first group focuses on the creation of effective swimming motility assays. All kinds of different media and swimming agar plates were to be tested, because fast E. coli can only show their potential under the right conditions. Furthermore, an efficient selection system should be created in order to separate the fast E. coli from the slower ones and to test potential attractants for our swimmers.

Creation of a fast strain represents the main task for the second group. The main question here is: which genes have the potential to make our E. coli faster and how do they need to be regulated to achieve this? Naturally, genes that code for parts of the bacterial motor, the flagellum, were selected for testing as well as FlhDC, a master regulator for motility and chemotaxis. The output is then measured as motility on the first group's swimming plates.

The last group focuses on the directed mutagenesis of the aspartate receptor Tar. Thereby, a library of numerous different and new Tar receptors can be created. Some of these might exhibit the ability to recognize a specific substance of interest. E. coli strains possessing such mutated receptors can then be screened for homing ability towards a selection of chemical compounds.

These three groups would focus mostly on their separate projects during the early phases of lab-work and also plan their schedules independently to minimize frictional losses. But as time progresses and the first results are obtained the work of our focus groups overlaps more and more in order to achieve our ultimate goal: the creation of Homing Coli.

Chemotaxis

Sensing and the mechanism of chemotaxis

Chemotaxis is a phenomenon whereby cells or organisms direct their orientation or movement in relation to a gradient of chemical agents (Fig 1). These chemical agents are known as chemoattractants and chemorepellants, which are inorganic or organic substances like amino acids and sugars. They are able to activate chemotaxis in motile cells. This chemotaxis behavior is triggered by binding of chemoattractants or chemorepellants to chemotaxis receptors such as the target of our iGEM project, the aspartate receptor Tar.

Figure 1: Chemotaxis of E. coli. (a) When no attractant is present E. coli switches from direct swimming to tumbling randomly. (b) In the presence of an attractant E. coli moves through the gradient in the direction of the attractant. (Attractant gradient is shown in green.)

Chemotaxis is based on high-order intracellular signaling structures. Clustered receptors in the cell wall of bacteria sense signals and mediate downstream signaling in the cell via associated proteins in a highly cooperative manner [2]. These high-order intracellular signaling structures are also known as two-component systems.

Figure 2: Schematic structure of a two-component system. A histidine kinase (HK) serves as sensing structure for attractants or repellents and mediates downstream signaling to autokinase (red). The response regulator (RR) consists of a receiver (purple) and an output module (green) which if activated induces gene expression [2].

A two-component system consists of a sensory histidine kinase and a phosphorylable response regulator [2] (Fig 1). Transfer of the phosphate group from a histidine residue of the kinase domain to an aspartate residue of the response regulator activates the output domain. This normally results in activation of gene expression.

Beside the aspect that the sensing in E. coli is coupled to flagella-based motion, the two-component system is more complex. There are five histidine-kinase-associated chemotaxis receptors of E. coli known. The receptors are typically arranged as a trimeric application of dimeric receptor subunits (trimers of dimers) that are spanning through the membrane. The receptors are methyl-accepting chemotaxis proteins (MCPs) that are directly associated with CheA, a histidine autokinase and CheW, an adaptor protein that couples CheA to the receptor protein.
There are two conformational states of receptor kinases possible: the kinase-on and kinase-off state [3]. In kinase-off state the counter-clockwise (CCW) rotation is active, which leads to forward swimming. In the kinase-on state CheA autophosphorylation is activated due to repellent binding whereas in the kinase-off state autophosphorylation is inactive due to attractant binding (Fig 3).

In the case of kinase-on state, the autophosphorylated CheA transfers a phosphate group to one of the two response regulators, CheY and CheB.CheY is responsible for motor control by binding to the flagellar rotary motor. This results in clockwise (CW) rotation, which is visible as random directional movement. CheZ, a phosphatase, dephosphorylates CheY to keep random movement low (Fig 3).

The methylesterase CheB and methyltransferase CheR are counterplayers in sensory adaptation. Here, the MCPs play a crucial role. Both MCP sites have glutamines in their structure. These are functional mimics of methyl glutamates. In the case of CheB is bound to a phosphate group from CheA, it mediates deamidation of glutamines to methyl-accepting glutamates. Therefore the receptor is in the off-state with a high attractant affinity and it is likely to be methylated but not demethylated [3]. Because the kinetics of methylation and demethylation are relatively slow, adaptation can take tens to hundreds of seconds [2].

All in all, E. coli switches from tumbling to swimming when it is surrounded by a gradient of attractants. Increased attractant stimulation results in both, terminating tumbling and activation of swimming towards the attractants [2].

Figure 3: Molecular mechanism of tumbling and swimming. Activated CheA transfers a phosphate group to CheY thus activating clockwise (CW) rotation which leads E. coli tumble. CheZ dephosphorylates CheY to activate counter-clockwise (CCW) flagella rotation that results in swimming.
Figure 4: Structure of E. coli chemoreceptor Tar. Left: Ribbon diagram and chematic show of the 3D structure of Tar [3]. Right: Detail view of the 3D structure ligand binding domain of Tar (PDB file: 1WAT).

Tar chemoreceptor of E. coli

The aspartate receptor Tar (taxis to aspartate and repellents) is one member of five classical methyl-accepting chemotaxis proteins in E. coli (Aer, Tar, Tsr, Trg and Tap) that mediate chemotactic response. The whole chemoreceptor is build of three parts: a transmembrane sensing domain, a signal conversion domain and a kinase control domain (Fig 4). The transmembrane sensing domain of Tar is a four helix bundle where one bundle consists of two antiparallel helices [3].

Tar is able to sense aspartate in a high sensitive manner and a lower sensitivity for glutamate and other compounds is known [3]. The ligand binding site involves some aminoacid residues of four helices. Binding of the ligand causes a conformational change. The signal is then transmitted across the membrane through the signal conversion domain to the kinase control domain (Koshland et al., 2001) which leads to flagellar motion.

Sensory molecules

Sensory molecules are organic or inorganic agents that can be divided into two groups: chemoattractants and chemorepellents. Chemoattractants are molecules like aminoacids, organic or inorganic acids, small peptides or chemokines. They induce the active motion of the bacteria towards the highest concentration of the attractant (Fig 5). Chemorepellents have a danger signaling function. If bacteria recognize repellents, they swim away from the source of repellents (Fig 5).

Sensory molecules can be recognized by various receptors. E. coli has five of these receptors: Aer for sensing oxygen, Tar for sensing aspartate and repellents, Tsr for sensing serine and repellents, Trg for sensing ribose and galactose and Tap for sensing dipeptides. Receptors are able to mediate taxis to other sensory molecules as well but with lower affinity. Therefore, we try to find new recpetors by mutagenesis of the sensory molecule binding site of Tar.

Figure 5: Reaction of E. coli to chemoattractants and chemorepellents. E. coli swims towards the highest concentration of the chemoattractant or away from the highest concentration of the chemorepellent.

Sources:
[1] Madigan M. T., Martinko J. M., Stahl D. A., Clark D. P. (2012). Brock Microbiology. Vol. 13. Pearson, San Francisco, 78 – 80
[2] Sourjik V., Armitage J. P. (2010). Spatial organization in bacterial chemotaxis. EMBO J. 29:16, 2724 - 2733
[3] Hazelbauer G. L., Falke J. J., Parkinson J. S. (2008). Bacterial chemoreceptors: high-performance signaling in networked arrays. Trends Biochem Sci. 33:1, 9 - 19

Poster

http://www.patrickreinke.de/igem/poster.png

↑ Back to top!