Team:TU-Delft/part3

From 2012.igem.org

Revision as of 01:25, 27 September 2012 by SietskeGrijseels (Talk | contribs)

Menu

Receptor

Content

Introduction
Parts
Results
Conclusions
Recommendations

Introduction

By combining the olfactory receptor and the FUS1pr-EGFP reporter, a complete yeast olfactory system is obtained. If the corresponding ligand binds to the receptor the FAR1 promoter is turned on and the EGFP is expressed. This EGFP signal can be read out by a fluorescence meter. If the olfactory system will be implemented as a diagnostics tool in developing countries, the EGFP reporter should be changed by a visible reporter.
Besides the induction of the FUS1 promoter the cells also go in growth arrest mediated by the FAR1 promoter. However it is undesirable that the cells stop growing once they respond to a ligand. Therefore it is needed to knock out the FAR1 promoter.

Parts

The receptor constructs and the reporter constructs are combined to have one complete olfactory system. The following biobricks are created:


BBa_K775005
BBa_K775006
BBa_K775007
BBa_K775008

Results

Knock out FAR1

Setup
Outcome
For making a functional knockout, yeast strains BY4741; Mat a; his3D1; leu2D0; met15D0; ura3D0; YJL157c::kanMX4 and BY4741; Mat a; his3D1; leu2D0; met15D0; ura3D0; YHR005c::kanMX4 were used (Euroscarf). Also knockout cassette pUG72 is used (Euroscarf). The LoxP-Ura-LoxP is elongated using the pFx polymerase protocol. The PCR program and primer sequences in table 1 yielded a product which is put on a gel shown in figure 1. Here a band can be recognized between 2000 and 1500 nucleotides, which corresponds to the 1669 nucleotide PCR product.


Table 1 PCR program for elongation of knockout cassette for knocking out Far1 and primers used for elongation.
Repeats Temperature Duration
5x 95 Melting 2:00
51 Annealing 1:00
68 Elongation 2:00
25x 95 Melting 2:00
61 Annealing 1:00
68 Elongation 2:00

GPA ko fw
TTAGCATCACATCAATAATCCAGAGGTGTATAAATTGATATATTAAGGTAGGAAATAATGCAGCTGAAGCTTCGTACGC
GPA ko rv
TGCATCTTCGGAAACAGAATTTACGTATCTAAACACTACTTTAATTATACAGTTCCTTCAGCATAGGCCACTAGTGGATCTG
FAR1 ko fw
ACACAAAGTCTATAGATCCACTGGAAAGCTTCGTGGGCGTAAGAAGGCAATCTATTAATGCAGCTGAAGCTTCGTACGC
FAR1 ko rv
GAAAAAAAAAAAAGGAAAAGCAAAAGCCTCGAAATACGGGCCTCGATTCCCGAACTACTAGCATAGGCCACTAGTGGATCTG
GPA ko fw short
TAATCCAGAGGTGTATAAATTGATATATTAAGGTAGGAAATAATGCAGCTGAAGCTTCGTACGC
GPA ko rv short
AGAATTTACGTATCTAAACACTACTTTAATTATACAGTTCCTTCAGCATAGGCCACTAGTGGATCTG
FAR1 ko fw short
ATCCACTGGAAAGCTTCGTGGGCGTAAGAAGGCAATCTATTAATGCAGCTGAAGCTTCGTACGC
FAR1 ko rv short
AAAAGCAAAAGCCTCGAAATACGGGCCTCGATTCCCGAACTACTAGCATAGGCCACTAGTGGATCTG
ATF1 ko fw
gaaaataaaaaacggCACTTCATCAGTATCACAAATACCATCAATTTATCAGCTCTCATGCAGCTGAAGCTTCGTACGC
ATF1 ko rv
ggttatttacacgacatAATCATATTGTCGAATAATATCAGTCAAGCATCATGTGAGATCTAGCATAGGCCACTAGTGGATCTG
ATF1 ko fw short
CACTTCATCAGTATCACAAATACCATCAATTTATCAGCTCTCATGCAGCTGAAGCTTCGTACGC
ATF1 ko rv short
AATCATATTGTCGAATAATATCAGTCAAGCATCATGTGAGATCTAGCATAGGCCACTAGTGGATCTG

Figure 1: 1% agarose in TAE ~45 run on 80 Volts. In the picture can be seen: 1 SmartLadder, 2 Far1 short PCR product, 3 Far1 long PCR product, 4 Gpa1 short PCR product, 5 Gpa1 long PCR product, 6 Atf1 short PCR product, 7 Atf1 long PCR product.

Fluorometer experiment

Setup
With yeast strains transformed with the GPR109A receptor and output BBa_K775005 and the R17-ODR10 receptor and output BBa_K775008 a fluorometer experiment was performed. After addition of the ligands OD600 and fluorescence were measured in time.
Outcome
This experiment is to be optimized.

Conclusions

Recommendations