Team:Columbia-Cooper-NYC/Main
From 2012.igem.org
Team:Cambridge
From 2010.igem.org
The Columbia-Cooper iGEM team is working with Acidithiobacillus ferrooxidans to create a light-controlled printed circuit board manufacturing process. This bacteria’s metabolism relies on its ability to oxidize iron; the iron can then be used to oxidize, and in turn solubilize, copper. By genetically altering the bacteria, we will install a light sensitive mechanism which will enable controlled copper etching, leaving a finished circuit board. Once a blank printed circuit board is placed in a thin layer of solid media, the bacteria will be applied onto the surface of the media and light will be focused on it in a desired pattern. The light sensitive mechanism in A. ferro will activate and self-destruct in the pathway of the light. In the end, the circuit board will be "etched" by the bacteria everywhere but the illuminated spots, leaving a desired pattern on the circuit board. Click here for details.
The International Genetically Engineered Machine competition (iGEM) is the premiere undergraduate Synthetic Biology competition. Student teams are given a kit of biological parts from the Registry of Standard Biological Parts. Working at their own schools over the summer, they use these and new parts of their own design to build biological systems and operate them in living cells. This project design and competition format is an exceptionally motivating and effective teaching method.
Click here for details..
Our project is to revamp a chemical and mechanical manufacturing process, so in addition to working with DNA, we also worked on macro-scale batches of copper foil, ferrooxidans (the bacteria), and other chemicals. Using our liquid media, we were able to grow healthy ferrooxidans and simultaneously dissolve (etch) copper foil much faster than the basal rate (without ferrooxidans). Since our PCB manufacturing process requires the ferrooxidans to "stay put", we have been developing a solid agar-based media, above which the ferrooxidans grow, and below which the copper is etched, again faster than the basal rate. We use nail polish only to simulate patterned etching while the genetics group works. Click here for details.
Click here for details.
Click here for details..