|
|
Line 2: |
Line 2: |
| | | |
| == References == | | == References == |
| + | |
| + | In this section you will find references about production and modelling of recombinant spider silk proteins. |
| + | |
| + | == Recommended literature == |
| + | |
| + | Teulé, F., Cooper, A. R., Furin, W. a, Bittencourt, D., Rech, E. L., Brooks, A., & Lewis, R. V. (2009). A protocol for the production of recombinant spider silk-like proteins for artificial fiber spinning. Nature protocols, 4(3), 341-55. doi:10.1038/nprot.2008.250 |
| + | |
| + | Widhe, M., Johansson, J., Hedhammar, M., & Rising, A. (2012). Invited review current progress and limitations of spider silk for biomedical applications. Biopolymers, 97(6), 468-78. doi:10.1002/bip.21715 |
| + | |
| + | Widmaier, D. M., Tullman-Ercek, D., Mirsky, E. a, Hill, R., Govindarajan, S., Minshull, J., & Voigt, C. a. (2009). Engineering the Salmonella type III secretion system to export spider silk monomers. Molecular systems biology, 5(309), 309. doi:10.1038/msb.2009.62 |
| + | |
| + | Xia, X.-X., Qian, Z.-G., Ki, C. S., Park, Y. H., Kaplan, D. L., & Lee, S. Y. (2010). Native-sized recombinant spider silk protein produced in metabolically engineered Escherichia coli results in a strong fiber. Proceedings of the National Academy of Sciences of the United States of America, 107(32), 14059-63. doi:10.1073/pnas.1003366107 |
| + | |
| + | == Complementary literature == |
| | | |
| An, B., Hinman, M. B., Holland, G. P., Yarger, J. L., & Lewis, R. V. (2011). Inducing β-sheets formation in synthetic spider silk fibers by aqueous post-spin stretching. Biomacromolecules, 12(6), 2375-81. doi:10.1021/bm200463e | | An, B., Hinman, M. B., Holland, G. P., Yarger, J. L., & Lewis, R. V. (2011). Inducing β-sheets formation in synthetic spider silk fibers by aqueous post-spin stretching. Biomacromolecules, 12(6), 2375-81. doi:10.1021/bm200463e |
Line 28: |
Line 42: |
| | | |
| Rising, A., Widhe, M., Johansson, J., & Hedhammar, M. (2011). Spider silk proteins: recent advances in recombinant production, structure-function relationships and biomedical applications. Cellular and molecular life sciences : CMLS, 68(2), 169-84. doi:10.1007/s00018-010-0462-z | | Rising, A., Widhe, M., Johansson, J., & Hedhammar, M. (2011). Spider silk proteins: recent advances in recombinant production, structure-function relationships and biomedical applications. Cellular and molecular life sciences : CMLS, 68(2), 169-84. doi:10.1007/s00018-010-0462-z |
- |
| |
- | Teulé, F., Cooper, A. R., Furin, W. a, Bittencourt, D., Rech, E. L., Brooks, A., & Lewis, R. V. (2009). A protocol for the production of recombinant spider silk-like proteins for artificial fiber spinning. Nature protocols, 4(3), 341-55. doi:10.1038/nprot.2008.250
| |
| | | |
| Tobar, J. a, Carreño, L. J., Bueno, S. M., González, P. a, Mora, J. E., Quezada, S. a, & Kalergis, A. M. (2006). Virulent Salmonella enterica serovar typhimurium evades adaptive immunity by preventing dendritic cells from activating T cells. Infection and immunity, 74(11), 6438-48. doi:10.1128/IAI.00063-06 | | Tobar, J. a, Carreño, L. J., Bueno, S. M., González, P. a, Mora, J. E., Quezada, S. a, & Kalergis, A. M. (2006). Virulent Salmonella enterica serovar typhimurium evades adaptive immunity by preventing dendritic cells from activating T cells. Infection and immunity, 74(11), 6438-48. doi:10.1128/IAI.00063-06 |
Line 36: |
Line 48: |
| | | |
| Vollrath, F., & Knight, D. P. (2001). Liquid crystalline spinning of spider silk. Nature, 410(6828), 541-8. doi:10.1038/35069000 | | Vollrath, F., & Knight, D. P. (2001). Liquid crystalline spinning of spider silk. Nature, 410(6828), 541-8. doi:10.1038/35069000 |
- |
| |
- | Widhe, M., Johansson, J., Hedhammar, M., & Rising, A. (2012). Invited review current progress and limitations of spider silk for biomedical applications. Biopolymers, 97(6), 468-78. doi:10.1002/bip.21715
| |
- |
| |
- | Widmaier, D. M., Tullman-Ercek, D., Mirsky, E. a, Hill, R., Govindarajan, S., Minshull, J., & Voigt, C. a. (2009). Engineering the Salmonella type III secretion system to export spider silk monomers. Molecular systems biology, 5(309), 309. doi:10.1038/msb.2009.62
| |
| | | |
| Winkler, S., Szela, S., Avtges, P., Valluzzi, R., Kirschner, D. a, & Kaplan, D. (1999). Designing recombinant spider silk proteins to control assembly. International journal of biological macromolecules, 24(2-3), 265-70. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/10342773 | | Winkler, S., Szela, S., Avtges, P., Valluzzi, R., Kirschner, D. a, & Kaplan, D. (1999). Designing recombinant spider silk proteins to control assembly. International journal of biological macromolecules, 24(2-3), 265-70. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/10342773 |
- |
| |
- | Xia, X.-X., Qian, Z.-G., Ki, C. S., Park, Y. H., Kaplan, D. L., & Lee, S. Y. (2010). Native-sized recombinant spider silk protein produced in metabolically engineered Escherichia coli results in a strong fiber. Proceedings of the National Academy of Sciences of the United States of America, 107(32), 14059-63. doi:10.1073/pnas.1003366107
| |
References
In this section you will find references about production and modelling of recombinant spider silk proteins.
Recommended literature
Teulé, F., Cooper, A. R., Furin, W. a, Bittencourt, D., Rech, E. L., Brooks, A., & Lewis, R. V. (2009). A protocol for the production of recombinant spider silk-like proteins for artificial fiber spinning. Nature protocols, 4(3), 341-55. doi:10.1038/nprot.2008.250
Widhe, M., Johansson, J., Hedhammar, M., & Rising, A. (2012). Invited review current progress and limitations of spider silk for biomedical applications. Biopolymers, 97(6), 468-78. doi:10.1002/bip.21715
Widmaier, D. M., Tullman-Ercek, D., Mirsky, E. a, Hill, R., Govindarajan, S., Minshull, J., & Voigt, C. a. (2009). Engineering the Salmonella type III secretion system to export spider silk monomers. Molecular systems biology, 5(309), 309. doi:10.1038/msb.2009.62
Xia, X.-X., Qian, Z.-G., Ki, C. S., Park, Y. H., Kaplan, D. L., & Lee, S. Y. (2010). Native-sized recombinant spider silk protein produced in metabolically engineered Escherichia coli results in a strong fiber. Proceedings of the National Academy of Sciences of the United States of America, 107(32), 14059-63. doi:10.1073/pnas.1003366107
Complementary literature
An, B., Hinman, M. B., Holland, G. P., Yarger, J. L., & Lewis, R. V. (2011). Inducing β-sheets formation in synthetic spider silk fibers by aqueous post-spin stretching. Biomacromolecules, 12(6), 2375-81. doi:10.1021/bm200463e
Askarieh, G., Hedhammar, M., Nordling, K., Saenz, A., Casals, C., Rising, A., Johansson, J., et al. (2010). Self-assembly of spider silk proteins is controlled by a pH-sensitive relay. Nature, 465(7295), 236-8. doi:10.1038/nature08962
Ayoub, N. a, Garb, J. E., Tinghitella, R. M., Collin, M. a, & Hayashi, C. Y. (2007). Blueprint for a high-performance biomaterial: full-length spider dragline silk genes. PloS one, 2(6), e514. doi:10.1371/journal.pone.0000514
Bauer, F., & Scheibel, T. (2012). Artificial egg stalks made of a recombinantly produced lacewing silk protein. Angewandte Chemie (International ed. in English), 51(26), 6521-4. doi:10.1002/anie.201200591
Bayley, H. (1998). Puri ® cation and characterization of recombinant spider silk expressed in Escherichia coli. Cell, 1, 31-38.
Bogush, V. G., Sokolova, O. S., Davydova, L. I., Klinov, D. V., Sidoruk, K. V., Esipova, N. G., Neretina, T. V., et al. (2009). A novel model system for design of biomaterials based on recombinant analogs of spider silk proteins. Journal of neuroimmune pharmacology : the official journal of the Society on NeuroImmune Pharmacology, 4(1), 17-27. doi:10.1007/s11481-008-9129-z
Dams-Kozlowska, H., Majer, A., Tomasiewicz, P., Lozinska, J., Kaplan, D. L., & Mackiewicz, A. (2012). Purification and cytotoxicity of tag-free bioengineered spider silk proteins. Journal of biomedical materials research. Part A, 1-9. doi:10.1002/jbm.a.34353
Das, R., & Baker, D. (2008). Macromolecular modeling with rosetta. Annual review of biochemistry, 77, 363-82. doi:10.1146/annurev.biochem.77.062906.171838
Kenney, J. M., Knight, D., Wise, M. J., & Vollrath, F. (2002). Amyloidogenic nature of spider silk. European Journal of Biochemistry, 269(16), 4159-4163. doi:10.1046/j.1432-1033.2002.03112.x
Keten, S., & Buehler, M. J. (2010). Nanostructure and molecular mechanics of spider dragline silk protein assemblies. Journal of the Royal Society, Interface / the Royal Society, 7(53), 1709-21. doi:10.1098/rsif.2010.0149
Lazaris, A., Arcidiacono, S., Huang, Y., Zhou, J.-F., Duguay, F., Chretien, N., Welsh, E. a, et al. (2002). Spider silk fibers spun from soluble recombinant silk produced in mammalian cells. Science (New York, N.Y.), 295(5554), 472-6. doi:10.1126/science.1065780
Moisenovich, M. M., Pustovalova, O. L., Arhipova, a Y., Vasiljeva, T. V., Sokolova, O. S., Bogush, V. G., Debabov, V. G., et al. (2011). In vitro and in vivo biocompatibility studies of a recombinant analogue of spidroin 1 scaffolds. Journal of biomedical materials research. Part A, 96(1), 125-31. doi:10.1002/jbm.a.32968
Rising, A., Widhe, M., Johansson, J., & Hedhammar, M. (2011). Spider silk proteins: recent advances in recombinant production, structure-function relationships and biomedical applications. Cellular and molecular life sciences : CMLS, 68(2), 169-84. doi:10.1007/s00018-010-0462-z
Tobar, J. a, Carreño, L. J., Bueno, S. M., González, P. a, Mora, J. E., Quezada, S. a, & Kalergis, A. M. (2006). Virulent Salmonella enterica serovar typhimurium evades adaptive immunity by preventing dendritic cells from activating T cells. Infection and immunity, 74(11), 6438-48. doi:10.1128/IAI.00063-06
Vollrath, F. (1999). Biology of spider silk. International journal of biological macromolecules, 24(2-3), 81-8. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/10342751
Vollrath, F., & Knight, D. P. (2001). Liquid crystalline spinning of spider silk. Nature, 410(6828), 541-8. doi:10.1038/35069000
Winkler, S., Szela, S., Avtges, P., Valluzzi, R., Kirschner, D. a, & Kaplan, D. (1999). Designing recombinant spider silk proteins to control assembly. International journal of biological macromolecules, 24(2-3), 265-70. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/10342773