Team:Slovenia

From 2012.igem.org

(Difference between revisions)
Line 241: Line 241:
   float:left;
   float:left;
position:absolute;
position:absolute;
-
   left:200px;
+
   left:150px;
-
   top:650px;
+
   top:660px;
visibility:hidden;
visibility:hidden;
z-index:100;
z-index:100;
Line 256: Line 256:
   float:left;
   float:left;
position:absolute;
position:absolute;
-
   left:200px;
+
   left:150px;
-
   top:950px;
+
   top:960px;
visibility:hidden;
visibility:hidden;
z-index:100;
z-index:100;

Revision as of 04:29, 26 September 2012



The Challenge

Biological drugs such as hormones, enzymes, cytokines or antibodies are increasingly used to treat different diseases. Due to systemic administration, these drugs often have adverse effects. Additionally, the high cost of biopharmaceutials imposes a heavy burden on health systems.

We aimed to develop a safe and cost-effective biological in situ production and delivery system for biological drugs to increase the quality of patients' lives. This system should increase compliance to the therapy, minimize the number of required invasive procedures and introduce advanced multistage therapy while local administration could reduce the side effects.

We addressed this challenge by implementing microencapsulated engineered mammalian cells that can be regulated from the outside to produce different therapeutics, should be reliable, cost effective and safe.


The switch

We designed a new type of bistable toggle switch for mammalian cells based on designed DNA-binding proteins to enable simultaneous introduction of several orthogonal switches and construction of complex logic devices. We discovered that a classical toggle switch topology was ineffective if based on TAL effectors, because they bind to DNA non-cooperatively as monomers. We solved this problem by designing a switch comprised of a pair of mutual repressors (TAL-KRAB) coupled with a pair of activators (TAL-VP16) that form a positive feedback loop. This arrangement resulted in experimentally confirmed bistability in mammalian cells that can be regulated by small molecule inducers. Read more...

Modeling

Exhaustive mathematical modeling demonstrated that the classical toggle genetic switch arrangement is not stable without cooperativity. At the same time, the modeling confirmed an improved robustness of the switch when using modular DNA binding element-based transcriptional regulators that formed two positive feedback loops. This topology does not require cooperativity since nonlinearity is introduced by the positive feedback loop. A pharmacokinetic model of the local delivery of therapeutics by microencapsulated cells predicted that this type of drug delivery should have reduced systemic side effects. Read more...

Abstract in plain english

Biological drugs have lately been replacing chemical drugs in the treatement of numerous diseases due to their more specific nature. The current route of biological drug administration is usually intravenous or subcutaneous, which means that the drug is distributed more or less throughout the whole body, although its function should often be restricted to a specific organ or tissue. This can cause serious side effects, requires larger dosage and consequently raises the price of therapy. Our solution of this problem is to implant cells producing biological drugs inside the very tissue where the drug is required. The drug producing cells are safely sealed inside microcapsules, preventing dissemination of these cells and protecting them from destruction by the cells of the host immune system. The implanted cells are able to produce different types of drugs and switching between them can be controlled by a physician depending on the stage of the disease. We invented a new type of switch that will allow selecting production of different biological drug combinations in the affected tissue. We have modified cells for use in the therapy of hepatitis C, where the engineered cells produce a biological drug that has antiviral activity followed by a drug that improves liver regeneration. For the therapy after a heart attack we designed cells to suppress inflammation and promote the formation of new blood vessels around the affected tissue. A physician may initiate self-destruction of the cells and capsules by an outside stimulus when the therapy is over or at any other given time. We believe our system to be safe and effective and applicable to the therapy of different types of diseases.

Outcome

Achievements in technical details:
  • this is the first experimental implementation of a bistable toggle switch based on noncooperative DNA-binding proteins and the first bistable switch based on designed DNA-binding proteins,
  • we designed and tested a bistable toggle switch for mammalian cells based on orthogonal TAL-repressors and activators,
  • modeling demonstrated improved robustness of a switch based on a positive feedback loop, with respect to leaky transcription,
  • we introduced three safety mechanisms into microencapsulated mammalian cells:
    • an escape tag for cell elimination by natural killer cells,
    • a secretory alginate lyase for degradation of alginate microcapsules,
    • induction of apoptosis of therapeutic cells by the introduction of a prodrug,
  • we introduced interferon alpha/hepatocyte growth factor as an effector pair for the therapy of hepatitis C to inactivate the virus followed by the promotion of liver regeneration,
  • we introduced anakinra/vascular endothelial growth factor:platelet-derived growth factor as effectors for therapy of ischaemia to suppress inflammation followed by angiogenesis.
  • we deposited 90 BioBricks to the Registry, most of them used in functional devices,
  • we improved an existing BioBrick.


Project sponsors