Team:Evry/ODE model
From 2012.igem.org
(Difference between revisions)
Line 137: | Line 137: | ||
<img src="https://static.igem.org/mediawiki/2012/4/41/Refodegraph.png" width="450px"> | <img src="https://static.igem.org/mediawiki/2012/4/41/Refodegraph.png" width="450px"> | ||
</li> | </li> | ||
- | <li> In the second graph, the initial value of skin is equal to 10 mmol.L<sup>-1</sup> andc<sub>w</sub>=5.10<sup>-3</sup>mol.L<sup>-1</sup> | + | <li><p> In the second graph, the initial value of skin is equal to 10 mmol.L<sup>-1</sup> andc<sub>w</sub>=0.5.10<sup>-3</sup>mol.L<sup>-1</sup> |
+ | </p> | ||
<img src="https://static.igem.org/mediawiki/2012/4/41/OdegraphInit10Cwater500.png" width="450px"> | <img src="https://static.igem.org/mediawiki/2012/4/41/OdegraphInit10Cwater500.png" width="450px"> | ||
- | + | </li> | |
<h2>Conclusion</h2> | <h2>Conclusion</h2> |
Revision as of 20:22, 25 September 2012
Model using Ordinary Differential Equations(ODE)
Overview
-
The first model we developed represents the tadpole as a three compartment system:
- The skin that produces (or receives) auxins, denoted S in the equations;
- The blood that transport auxins to the organs, denoted B;
- The organs (called receptors) that interacts with auxin molecules, denoted R.
- The auxin concentration inside a compartment is homogeneous This condition is inherent to this kind of modeling.
- No auxins can go from the skin directly to the organs. We have chosen to neglect the exchanges between the skin and the other organs.
- The auxin flow follows the concentration gradient between compartments. This hypothesis is based on the fact that a small capillary is nothing more than a hole in a cell layer. So the exchanges between the surrounding cells and the capillary are mutual.
- S in m2, represents the area of the exchange surface between the two compartments.
- P in m2, represents the permeability of the membrane between the specified compartments.
- C in [quantity] / m3, represents the concentration of auxin in the specified compartment
-
This first graph is obtained considering no auxin in the tadpole and cw=5.10-3mol.L-1 which is the concentration we wanted to use for experiences. The result shows that the quantity of auxin in skin and in the receptor grow until a limit value. This value corresponds indeed to the concentration in water; indeed the equilibrium is reached when all the concentrations are equal.
In the second graph, the initial value of skin is equal to 10 mmol.L-1 andcw=0.5.10-3mol.L-1
The parallel with (electrical) engineering is made easy: the skin represents a generator that will add a quantity to the system; The blood represents wires, that convey this quantity throughout the system; Finally the organs are the sinks that use the quantity to work.
This very idealized view of the tadpoles allows to make some interesting simplifications: The processes happening in the system can be approximated using Ordinary Differential Equations (ODE), one of the simplest form of differential equations; Plus, the organs repartition and shape are not taken into account.
This over-simplication of the problem causes the model to give very imprecise quantitative results but its strength is in allowing us to make some qualitative predictions about the success or failure of some experiments.
Hypotheses
There are the different hypotheses we were constrained to make in order to model the system:Model description
Equations
Each compartment is modeled by a differential equation representing the evolution of the auxin quantity as a function of the time. Each equations are composed of two kinds of terms: creation and degradation. The creation term can represent either a creation of auxin in the compartment or an arriving quantity of auxin from another one. In the same way, the degradation term can either represent a natural degradation of molecules or a quantity leaving the compartment.In this system, the J terms represent the fluxes between the different compartments. We made them depend on the concentrations of both the in and out compartments as explained in hypothesis 2. Their mathematical formulation is the following:
Where:
These flow equations are based on Newton's law of cooling where the difference between the concentrations of the two compartments gives the direction and magnitude of the flow. This allows us to model in a single equations the two opposite flows between the compartments.
Parameters
The parameters of the model are hard to estimate because they are an aggregation of different physical values. This is due to the high level view provided by the model. The different parameters are:
Description | Symbol | Type | Values |
---|---|---|---|
Permeabilities | P | calculated | here |
Contact surfaces | S | calculated | here |
Volumes | V | calculated | here |
Degradation rate | Ddie | estimated | ? |
Creation rate | Dborn | computed | plasmid repartition model |
Results
By modifying the initial conditions and cw we have observed globaly 3 different behaviours of the system:Conclusion
References
References:
Other possible topologies
With auxin in the external medium:With a specific receptor organ: