Team:ETH Zurich/Construct2/Theory

From 2012.igem.org

(Difference between revisions)
(Created page with "{{:Team:ETH_Zurich/Templates/TestHeader}} {{:Team:ETH_Zurich/Templates/Construct2Menu}} {{:Team:ETH_Zurich/Templates/Footer}}")
 
Line 2: Line 2:
{{:Team:ETH_Zurich/Templates/Construct2Menu}}
{{:Team:ETH_Zurich/Templates/Construct2Menu}}
 +
===LovTap===
 +
LovTap is a protein fusion of the LOV2 domain from Avena sativa phototropin1 and trp repressor from ''E.coli''.
 +
Phototropin is a plant blue-light receptor, with a flavin mononucleotide (FMN) cofactor and  conserved cysteine residues responsible for the conformation change upon blue-light exposure. The LovTap fusion makes use of this conformational change.  In the dark state the LovTap is not able to bind to DNA. After light activation the deformation of the TrpR domain is reversed and TrpR is able to bind to the ''trp'' operon.  
 +
 +
We would like to use LovTap as a blue light sensor for our multiplexer. 
 +
 +
 +
[[File:LovTap_1.png|frameless|500px|center]]
 +
Fig: The figure shows in blue the Lov2 domain, in yellow the TrpR and in dark blue the linker helix.
 +
 +
===Cph8===
 +
 +
Cph8 is a chimeric light receptor engineered by Levskaya et al. in 2005. It contains the photoreceptor Cph1 and the EnvZ histidine kinase.  The light sensing unit is connected to transcription via the EnvZ-OmpR signaling pathway, phosphorylated OmpR acting as a transcription factor.
 +
 +
Cph1 is only active when it binds the chromophore phycocyanobiline (PCB). Since PCB is not naturally produced in E.coli we also need to express the PCB generators: ho1 and pcyA.
 +
 +
In this construct far red light activates the EnvZ kinase which results in the phosphorylation of OmpR and its activation as a transcription factor. Red light on the other hand deactivates the kinase and therefore the gene can not be expressed. 
 +
 +
[[File:Cph8.png|frameless|400px|center]]
 +
Fig: This figure shows the fusion of the Cph1 (green) with the PCB chromophore linked with the EnvZ Kinase  and OmpR (organe). Phosphorylated OmpR binds to the ''ompC'' promoter and activates transcription.  
{{:Team:ETH_Zurich/Templates/Footer}}
{{:Team:ETH_Zurich/Templates/Footer}}

Latest revision as of 10:13, 25 September 2012

Eth ecolipseeth logo.png
Eth igem logo.png

LovTap

LovTap is a protein fusion of the LOV2 domain from Avena sativa phototropin1 and trp repressor from E.coli.

Phototropin is a plant blue-light receptor, with a flavin mononucleotide (FMN) cofactor and  conserved cysteine residues responsible for the conformation change upon blue-light exposure. The LovTap fusion makes use of this conformational change.  In the dark state the LovTap is not able to bind to DNA. After light activation the deformation of the TrpR domain is reversed and TrpR is able to bind to the trp operon.  

We would like to use LovTap as a blue light sensor for our multiplexer. 


LovTap 1.png

Fig: The figure shows in blue the Lov2 domain, in yellow the TrpR and in dark blue the linker helix.

Cph8

Cph8 is a chimeric light receptor engineered by Levskaya et al. in 2005. It contains the photoreceptor Cph1 and the EnvZ histidine kinase.  The light sensing unit is connected to transcription via the EnvZ-OmpR signaling pathway, phosphorylated OmpR acting as a transcription factor.

Cph1 is only active when it binds the chromophore phycocyanobiline (PCB). Since PCB is not naturally produced in E.coli we also need to express the PCB generators: ho1 and pcyA.

In this construct far red light activates the EnvZ kinase which results in the phosphorylation of OmpR and its activation as a transcription factor. Red light on the other hand deactivates the kinase and therefore the gene can not be expressed. 

Cph8.png

Fig: This figure shows the fusion of the Cph1 (green) with the PCB chromophore linked with the EnvZ Kinase  and OmpR (organe). Phosphorylated OmpR binds to the ompC promoter and activates transcription.  


References

  • Brown, B. a, Headland, L. R., & Jenkins, G. I. (2009). UV-B action spectrum for UVR8-mediated HY5 transcript accumulation in Arabidopsis. Photochemistry and photobiology, 85(5), 1147–55.
  • Christie, J. M., Salomon, M., Nozue, K., Wada, M., & Briggs, W. R. (1999): LOV (light, oxygen, or voltage) domains of the blue-light photoreceptor phototropin (nph1): binding sites for the chromophore flavin mononucleotide. Proceedings of the National Academy of Sciences of the United States of America, 96(15), 8779–83.
  • Christie, J. M., Arvai, A. S., Baxter, K. J., Heilmann, M., Pratt, A. J., O’Hara, A., Kelly, S. M., et al. (2012). Plant UVR8 photoreceptor senses UV-B by tryptophan-mediated disruption of cross-dimer salt bridges. Science (New York, N.Y.), 335(6075), 1492–6.
  • Cloix, C., & Jenkins, G. I. (2008). Interaction of the Arabidopsis UV-B-specific signaling component UVR8 with chromatin. Molecular plant, 1(1), 118–28.
  • Cox, R. S., Surette, M. G., & Elowitz, M. B. (2007). Programming gene expression with combinatorial promoters. Molecular systems biology, 3(145), 145. doi:10.1038/msb4100187
  • Drepper, T., Eggert, T., Circolone, F., Heck, A., Krauss, U., Guterl, J.-K., Wendorff, M., et al. (2007). Reporter proteins for in vivo fluorescence without oxygen. Nature biotechnology, 25(4), 443–5
  • Drepper, T., Krauss, U., & Berstenhorst, S. M. zu. (2011). Lights on and action! Controlling microbial gene expression by light. Applied microbiology, 23–40.
  • EuropeanCommission (2006). SCIENTIFIC COMMITTEE ON CONSUMER PRODUCTS SCCP Opinion on Biological effects of ultraviolet radiation relevant to health with particular reference to sunbeds for cosmetic purposes.
  • Elvidge, C. D., Keith, D. M., Tuttle, B. T., & Baugh, K. E. (2010). Spectral identification of lighting type and character. Sensors (Basel, Switzerland), 10(4), 3961–88.
  • GarciaOjalvo, J., Elowitz, M. B., & Strogatz, S. H. (2004). Modeling a synthetic multicellular clock: repressilators coupled by quorum sensing. Proceedings of the National Academy of Sciences of the United States of America, 101(30), 10955–60.
  • Gao Q, Garcia-Pichel F. (2011). Microbial ultraviolet sunscreens. Nat Rev Microbiol. 9(11):791-802.
  • Goosen N, Moolenaar GF. (2008) Repair of UV damage in bacteria. DNA Repair (Amst).7(3):353-79.
  • Heijde, M., & Ulm, R. (2012). UV-B photoreceptor-mediated signalling in plants. Trends in plant science, 17(4), 230–7.
  • Hirose, Y., Narikawa, R., Katayama, M., & Ikeuchi, M. (2010). Cyanobacteriochrome CcaS regulates phycoerythrin accumulation in Nostoc punctiforme, a group II chromatic adapter. Proceedings of the National Academy of Sciences of the United States of America, 107(19), 8854–9.
  • Hirose, Y., Shimada, T., Narikawa, R., Katayama, M., & Ikeuchi, M. (2008). Cyanobacteriochrome CcaS is the green light receptor that induces the expression of phycobilisome linker protein. Proceedings of the National Academy of Sciences of the United States of America, 105(28), 9528–33.
  • Kast, Asif-Ullah & Hilvert (1996) Tetrahedron Lett. 37, 2691 - 2694., Kast, Asif-Ullah, Jiang & Hilvert (1996) Proc. Natl. Acad. Sci. USA 93, 5043 - 5048
  • Kiefer, J., Ebel, N., Schlücker, E., & Leipertz, A. (2010). Characterization of Escherichia coli suspensions using UV/Vis/NIR absorption spectroscopy. Analytical Methods, 9660. doi:10.1039/b9ay00185a
  • Kinkhabwala, A., & Guet, C. C. (2008). Uncovering cis regulatory codes using synthetic promoter shuffling. PloS one, 3(4), e2030.
  • Krebs in Deutschland 2005/2006. Häufigkeiten und Trends. 7. Auflage, 2010, Robert Koch-Institut (Hrsg) und die Gesellschaft der epidemiologischen Krebsregister in Deutschland e. V. (Hrsg). Berlin.
  • Lamparter, T., Michael, N., Mittmann, F., & Esteban, B. (2002). Phytochrome from Agrobacterium tumefaciens has unusual spectral properties and reveals an N-terminal chromophore attachment site. Proceedings of the National Academy of Sciences of the United States of America, 99(18), 11628–33.
  • Levskaya, A. et al (2005). Engineering Escherichia coli to see light. Nature, 438(7067), 442.
  • Mancinelli, A. (1986). Comparison of spectral properties of phytochromes from different preparations. Plant physiology, 82(4), 956–61.
  • Nakasone, Y., Ono, T., Ishii, A., Masuda, S., & Terazima, M. (2007). Transient dimerization and conformational change of a BLUF protein: YcgF. Journal of the American Chemical Society, 129(22), 7028–35.
  • Orth, P., & Schnappinger, D. (2000). Structural basis of gene regulation by the tetracycline inducible Tet repressor-operator system. Nature structural biology, 215–219.
  • Parkin, D.M., et al., Global cancer statistics, 2002. CA: a cancer journal for clinicians, 2005. 55(2): p. 74-108.
  • Rajagopal, S., Key, J. M., Purcell, E. B., Boerema, D. J., & Moffat, K. (2004). Purification and initial characterization of a putative blue light-regulated phosphodiesterase from Escherichia coli. Photochemistry and photobiology, 80(3), 542–7.
  • Rizzini, L., Favory, J.-J., Cloix, C., Faggionato, D., O’Hara, A., Kaiserli, E., Baumeister, R., et al. (2011). Perception of UV-B by the Arabidopsis UVR8 protein. Science (New York, N.Y.), 332(6025), 103–6.
  • Roux, B., & Walsh, C. T. (1992). p-aminobenzoate synthesis in Escherichia coli: kinetic and mechanistic characterization of the amidotransferase PabA. Biochemistry, 31(30), 6904–10.
  • Strickland, D. (2008). Light-activated DNA binding in a designed allosteric protein. Proceedings of the National Academy of Sciences of the United States of America, 105(31), 10709–10714.
  • Sinha RP, Häder DP. UV-induced DNA damage and repair: a review. Photochem Photobiol Sci. (2002). 1(4):225-36
  • Sambandan DR, Ratner D. (2011). Sunscreens: an overview and update. J Am Acad Dermatol. 2011 Apr;64(4):748-58.
  • Tabor, J. J., Levskaya, A., & Voigt, C. A. (2011). Multichromatic Control of Gene Expression in Escherichia coli. Journal of Molecular Biology, 405(2), 315–324.
  • Thibodeaux, G., & Cowmeadow, R. (2009). A tetracycline repressor-based mammalian two-hybrid system to detect protein–protein interactions in vivo. Analytical biochemistry, 386(1), 129–131.
  • Tschowri, N., & Busse, S. (2009). The BLUF-EAL protein YcgF acts as a direct anti-repressor in a blue-light response of Escherichia coli. Genes & development, 522–534.
  • Tschowri, N., Lindenberg, S., & Hengge, R. (2012). Molecular function and potential evolution of the biofilm-modulating blue light-signalling pathway of Escherichia coli. Molecular microbiology.
  • Tyagi, A. (2009). Photodynamics of a flavin based blue-light regulated phosphodiesterase protein and its photoreceptor BLUF domain.
  • Vainio, H. & Bianchini, F. (2001). IARC Handbooks of Cancer Prevention: Volume 5: Sunscreens. Oxford University Press, USA
  • Quinlivan, Eoin P & Roje, Sanja & Basset, Gilles & Shachar-Hill, Yair & Gregory, Jesse F & Hanson, Andrew D. (2003). The folate precursor p-aminobenzoate is reversibly converted to its glucose ester in the plant cytosol. The Journal of biological chemistry, 278.
  • van Thor, J. J., Borucki, B., Crielaard, W., Otto, H., Lamparter, T., Hughes, J., Hellingwerf, K. J., et al. (2001). Light-induced proton release and proton uptake reactions in the cyanobacterial phytochrome Cph1. Biochemistry, 40(38), 11460–71.
  • Wegkamp A, van Oorschot W, de Vos WM, Smid EJ. (2007 )Characterization of the role of para-aminobenzoic acid biosynthesis in folate production by Lactococcus lactis. Appl Environ Microbiol. Apr;73(8):2673-81.