Team:UC Chile2/Cyanolux/Project

From 2012.igem.org

(Difference between revisions)
Line 82: Line 82:
<br />
<br />
-
<p>To try our approach, we selected various promoter which could serve the purpose.  Our rational for selecting candidate promoters involved amplitude of oscillation, peak activity, hour, absence of restriction sites, predicted strength of promoter according to the role of the gene and reproducibility between experiments (based on the literature available).  We looked for promoters which would have peak expression nearby dusk hours and that were slightly out of phase to optimize production of bioluminescence according to our mathematical models <b>(LINK OVER HERE!)</b>. We prioritized promoters from genes that would be involved in central energetic metabolism as we believe that their expression would be most robust and reliable.</p>
+
<p>To try our approach, we selected various promoters which could serve the purpose.  Our rational for selecting candidate promoters involved amplitude of oscillation, peak activity, hour, absence of restriction sites, predicted strength of promoter according to the role of the gene and reproducibility between experiments (based on the literature available).  We looked for promoters which would have peak expression nearby dusk hours and that were slightly out of phase to optimize production of bioluminescence according to our mathematical models <b>(LINK OVER HERE!)</b>. We prioritized promoters from genes that would be involved in central energetic metabolism as we believe that their expression would be most robust and reliable.</p>
<br />
<br />
<p>We choose the transaldolase promoter <b>(specific name here and code in Synechocystis Genome)</b> to direct the expression of the LuxAB genes and we found a couple of other promoters which filled the other requirements from above. Pcaa3 (NAME HERE AND DESCRIPTION OF ENDOGENOUS ACTIVITY) and PsigE (NAME HERE AND DESCRIPTION OF ENDOGENOUS ACTIVITY), the former being already in Biobrick format (courtesy from the Utah team iGEM 2010).
<p>We choose the transaldolase promoter <b>(specific name here and code in Synechocystis Genome)</b> to direct the expression of the LuxAB genes and we found a couple of other promoters which filled the other requirements from above. Pcaa3 (NAME HERE AND DESCRIPTION OF ENDOGENOUS ACTIVITY) and PsigE (NAME HERE AND DESCRIPTION OF ENDOGENOUS ACTIVITY), the former being already in Biobrick format (courtesy from the Utah team iGEM 2010).
Line 89: Line 89:
<h2>Building constructs</h2>
<h2>Building constructs</h2>
<br />
<br />
 +
When confronted with the different available strategies to express the genes from the Lux operon in Synechocystis, we concluded that the one that best suits our need is by using integration plasmids. The reason for this is that the available plasmids that replicate in Synechocystis are very large (8 Kb) without even considering the genes we need to include in the constructs (that would sum up to a final 16 Kb aproximately). Such a large plasmid would prove very difficult to handle through molecular biology techniques, let alone transform Synechocystis.
 +
<br>
 +
Using integration plasmids also proposes an additional advantage, that is to produce successive integrations which allow accumulation of desirable elements in its genome. Integration in Synechocystis is undergone through double recombination of homologous DNA which also allows interruption of genes if wanted. In our case we have designed our system to produce suceptibility to copper as a biosafety measure to have further control over our recombinant Synechocystis.
 +
 +
<br>
 +
We have designed two constructs that have different recombination locations in the Synechocystis chromosome. We have named them according to what Utah iGEM team from 2010 proposed for [https://2010.igem.org/Construction_usu.html#Integration_Plasmid_Construction naming conventions]:
-
<p>As transformation in Synechocystis is undergone through double recombination of DNA strands, we designed two constructs that have different recombination locations in the Synechocystis chromosome. </p>
 
<h3>pSB1C3_IntK</h3>
<h3>pSB1C3_IntK</h3>
<br />
<br />
-
<p>The first of our constructs is an integrative plasmid which targets neutral recombination sites (slr0370 and slr03770 DOUBLECHECK this). We selected this locus because it has been extensively used in the literature (CAPAZ EXAGERE?) and it shown to have no deleterious effects on Synechocystis viability. We selected Kanamycin resistance as our transformation marker. [PUT LINK TO CONSTRUCT HERE].</p>
+
<p>This constructs is an integrative plasmid which targets neutral recombination sites (slr0370 and sll0337). We selected this locus because it has been extensively used in the literature (CAPAZ EXAGERE?) and it shown to have no deleterious effects on Synechocystis viability. We selected Kanamycin resistance as our transformation marker. [PUT LINK TO CONSTRUCT HERE].</p>
<h3>pSB1C3_IntS</h3>
<h3>pSB1C3_IntS</h3>

Revision as of 09:04, 23 September 2012

Project: Luxilla - Pontificia Universidad Católica de Chile, iGEM 2012