Team:UANL Mty-Mexico/Modeling/transport and accumulation
From 2012.igem.org
Line 94: | Line 94: | ||
- | <p><br><h3>ODEs</h3 | + | <p><br><h3>ODEs</h3></p><hr align="center" width="33%"/></br> |
<p>The core modifications and equation 6 allow us to propose a set of ODEs that describe the change of the concentrations of intracellular As, ArsR|As, MT|As and the unbound protein species. </p> | <p>The core modifications and equation 6 allow us to propose a set of ODEs that describe the change of the concentrations of intracellular As, ArsR|As, MT|As and the unbound protein species. </p> | ||
Line 133: | Line 133: | ||
- | <p><br><h3>Parameters</h3>< | + | <p><br><h3>Parameters</h3></p><hr align="center" width="33%"/></br> |
<center> | <center> | ||
Line 158: | Line 158: | ||
</td> | </td> | ||
<td valign="top"> | <td valign="top"> | ||
- | <p> | + | <p>Maximal transcription rate of ArsR</p> |
</td> | </td> | ||
<td valign="top"> | <td valign="top"> | ||
Line 173: | Line 173: | ||
</td> | </td> | ||
<td valign="top"> | <td valign="top"> | ||
- | <p> | + | <p>Maximal transcription rate of MT</p> |
</td> | </td> | ||
<td valign="top"> | <td valign="top"> | ||
Line 188: | Line 188: | ||
</td> | </td> | ||
<td valign="top"> | <td valign="top"> | ||
- | <p> | + | <p>Maximal translation rate of ArsR</p> |
</td> | </td> | ||
<td valign="top"> | <td valign="top"> | ||
Line 203: | Line 203: | ||
</td> | </td> | ||
<td valign="top"> | <td valign="top"> | ||
- | <p> | + | <p>Maximal translation rate of MT</p> |
</td> | </td> | ||
<td valign="top"> | <td valign="top"> | ||
Line 218: | Line 218: | ||
</td> | </td> | ||
<td valign="top"> | <td valign="top"> | ||
- | <p> | + | <p>Degradation rate of ArsR mRNA</p> |
</td> | </td> | ||
<td valign="top"> | <td valign="top"> | ||
Line 233: | Line 233: | ||
</td> | </td> | ||
<td valign="top"> | <td valign="top"> | ||
- | <p> | + | <p>Degradation rate of MT mRNA</p> |
</td> | </td> | ||
<td valign="top"> | <td valign="top"> | ||
Line 248: | Line 248: | ||
</td> | </td> | ||
<td valign="top"> | <td valign="top"> | ||
- | <p> | + | <p>Degradation rate of ArsR</p> |
</td> | </td> | ||
<td valign="top"> | <td valign="top"> | ||
Line 263: | Line 263: | ||
</td> | </td> | ||
<td valign="top"> | <td valign="top"> | ||
- | <p> | + | <p>Degradation rate of MT</p> |
</td> | </td> | ||
<td valign="top"> | <td valign="top"> | ||
Line 278: | Line 278: | ||
</td> | </td> | ||
<td valign="top"> | <td valign="top"> | ||
- | <p> | + | <p>Degradation rate of ArsR|As complex</p> |
</td> | </td> | ||
<td valign="top"> | <td valign="top"> | ||
Line 293: | Line 293: | ||
</td> | </td> | ||
<td valign="top"> | <td valign="top"> | ||
- | <p> | + | <p>Degradation rate of MT|As complex</p> |
</td> | </td> | ||
<td valign="top"> | <td valign="top"> | ||
Line 308: | Line 308: | ||
</td> | </td> | ||
<td valign="top"> | <td valign="top"> | ||
- | <p> | + | <p>Concentration of ars promoter</p> |
</td> | </td> | ||
<td valign="top"> | <td valign="top"> | ||
Line 323: | Line 323: | ||
</td> | </td> | ||
<td valign="top"> | <td valign="top"> | ||
- | <p> | + | <p>Concentration of constitutive promoter</p> |
</td> | </td> | ||
<td valign="top"> | <td valign="top"> | ||
Line 338: | Line 338: | ||
</td> | </td> | ||
<td valign="top"> | <td valign="top"> | ||
- | <p> | + | <p>Dissociation constant for the interaction of ArsR and pro<sub>ars</sub></p> |
</td> | </td> | ||
<td valign="top"> | <td valign="top"> | ||
Line 353: | Line 353: | ||
</td> | </td> | ||
<td valign="top"> | <td valign="top"> | ||
- | <p> | + | <p>Kinetic constant for the transport of extracellular arsenic</p> |
</td> | </td> | ||
<td valign="top"> | <td valign="top"> | ||
Line 368: | Line 368: | ||
</td> | </td> | ||
<td valign="top"> | <td valign="top"> | ||
- | <p> | + | <p>Hill coefficient for the interaction between ArsR and pro<sub>ars</sub></p> |
</td> | </td> | ||
<td valign="top"> | <td valign="top"> | ||
Line 382: | Line 382: | ||
</td> | </td> | ||
<td valign="top"> | <td valign="top"> | ||
- | <p> | + | <p>Hill coefficient for the interaction of ArsR and As</p> |
</td> | </td> | ||
<td valign="top"> | <td valign="top"> | ||
Line 397: | Line 397: | ||
</td> | </td> | ||
<td valign="top"> | <td valign="top"> | ||
- | <p> | + | <p>Hill coefficient for the interaction of MT and As</p> |
</td> | </td> | ||
<td valign="top"> | <td valign="top"> | ||
Line 406: | Line 406: | ||
</td> | </td> | ||
</tr> | </tr> | ||
+ | |||
<tr border="1" style="background-color:#CCCCCC"> | <tr border="1" style="background-color:#CCCCCC"> | ||
<td valign="top"> | <td valign="top"> | ||
Line 411: | Line 412: | ||
</td> | </td> | ||
<td valign="top"> | <td valign="top"> | ||
- | <p> | + | <p>Relation between total solution volume(V<sub>S</sub>) and total cell volume (<sub>C</sub>) </p> |
</td> | </td> | ||
<td valign="top"> | <td valign="top"> | ||
Line 420: | Line 421: | ||
</td> | </td> | ||
</tr> | </tr> | ||
+ | |||
<tr border="1" style="background-color:#CCCCCC"> | <tr border="1" style="background-color:#CCCCCC"> | ||
<td valign="top"> | <td valign="top"> | ||
Line 425: | Line 427: | ||
</td> | </td> | ||
<td valign="top"> | <td valign="top"> | ||
- | <p> | + | <p>Vmax for the Michaelis-Menten equation that describes As transport</p> |
</td> | </td> | ||
<td valign="top"> | <td valign="top"> | ||
Line 440: | Line 442: | ||
</center> | </center> | ||
- | <p><br><h3>Simulations</h3>< | + | <p><br><h3>Simulations</h3></p><hr align="center" width="33%"/></br> |
- | <p><br><h3>Steady state analysis</h3>< | + | <p><br><h3>Steady state analysis</h3></p><hr align="center" width="33%"/></br> |
<p><br><h2>Model considering lethal level of intracellular free As</h2><br></p> | <p><br><h2>Model considering lethal level of intracellular free As</h2><br></p> |
Revision as of 08:06, 17 September 2012
Transport and accumulation
Before us, team iGEM Groningen 2009 made a model for an arsenic accumulator at the population level; that is, they set some ODEs that represent the change on the total intracellular arsenic (considering not a single cell, but the whole culture, or more exactly, the total cell volume) with respect to time. Nevertheless, as the precise value for some parameters were unavailable, specially for the ArsB effect, part of their model remains aparameterized and they perform a quasi-steady state analysis.
After considering the effect of their metallothioneins (As-binding proteins), GlpF, ArsB and ArsR, they ended with the following time derivative:
Where As(III)in is the total intracellular arsenic; ArsRAs, MBPArsRAs, fMTAs, ArsBAs and GlpFAs are the arsenic bound proteins; nf is the Hill coefficient for the interaction between As and fMT; k1 and k2 are the kinetic constants for the interaction between As and ArsB and GlpF, respectively; finally, Vs/Vc represents the proportion between the total solution volume (Vs) and the total cell volume (Vc).
Core model
We built upon their model and made the following modifications, which we'll call the "core modifications" from now on:
- We assume that ArsB is non functional, so that the only protein affecting As transport is GlpF.
- GlpF effect is masked by the population level kinetics.
- We assume that the intracellular As concentration and the GlpF effect at the population level (that is, considering total cell volume) are homogeneously distributed and should be the same as in a single cell.
- The protein MBPArsR is not present in our system, so the variable MBPArsRAs is not considered for our model.
The next equation shows the application of those modifications:
\begin{equation}
\large\frac{\mathrm{d[As(III)in] } }{\mathrm{d} x} = -ArsR_{As} -n_{f}\cdot fMT_{As} + (\frac{V_s}{V_c} \cdot V_{max} \cdot \frac{As_{ex}}{K_{t}+As_{ex}}
\end{equation}
Now, let us introduce a variable called AsTOTALin, which represents the total amount of arsenic inside a cell (recall core modification number 2), whether free or bound to whatever protein. Let's also call AsFREEin the amount of free intracellular arsenic and AsBOUNDin the protein-bound As. In this way, AsTOTALin can be represented as follows: \begin{equation} \large[As_{TOTALin}] = [As_{FREEin}] + [As_{BOUNDin}] \end{equation}
In the iGEM Groningen 2009 model, Asin represents the free intracellular arsenic, as this variable has negative terms related to the binding of As to proteins; to avoid further confusions, we'll establish this equivalence as follows: AsFREEin, so that equation 2 changes to:
\begin{equation} \large[As_{FREEin}] = [As_{in(iGEM Groningen 2009)}] \end{equation}
If we further analyze the AsBOUNDin variable, considering that in our system only ArsR and a methalothionein (which we'll simply call MT) are being expressed, then equation 5 turns to be:
\begin{equation} \large\large[As_{TOTALin}] = [ArsR|As] + [MT|As] \end{equation} Finally, taking into consideration the work of team Cambridge 2009 and assuming that equilibrium is reached quickly, we can describe the formation kArsR|As and kMT|As as follows:
\begin{equation} \large \frac{d[ArsR|As]}{dt} = (\frac{[ArsR]}{1+(\frac{[As_{FREEin}])}{k_{[ArsR|As]}})^{h_2}} - \delta_{ArsR|As}[ArsR|As] \end{equation}
\begin{equation} \large \frac{d[MT|As]}{dt} = (\frac{[MT]}{1+(\frac{[As_{FREEin}])}{k_{[MT|As]}})^{h_3}} - \delta_{MT|As}[MT|As] \end{equation}
In equations 5 to 7, kArsR|As and kMT|As are the kinetic constants for the interaction of arsenic with ArsR and MT, respectively, using a different nomenclature as in equations 1 and 2; here, in equations 6 and 7, the binding of two molecules is represented as "moleculeA|moleculeB". The indexes h2 and h3 are the Hill coefficients for the interaction between arsenic and ArsR and MT, respectively. The deltas are the degradation constants for the protein|As complexes. The unbound As that results from complex degradation then goes to the AsFREEin pool and is ready to bind again available ArsR or MT.
ODEs
The core modifications and equation 6 allow us to propose a set of ODEs that describe the change of the concentrations of intracellular As, ArsR|As, MT|As and the unbound protein species.
Core model ODEs
mRNAs
\begin{equation} \large \frac{d[mRNA_{ArsR}]}{dt} = \alpha _{mArsR}\cdot (pro_{ars})\cdot(\frac{k_{D1}^{h_{1}}}{k_{D1}^{h_{1}}+[ArsR]^{h_{1}}})- \delta _{mRNA_{ArsR}}[mRNA_{ArsR}] \end{equation} \begin{equation} \large \frac{d[mRNA_{MT}]}{dt} = \alpha _{mMT}\cdot(pro_{cons})- \delta _{mRNA_{MT}}[mRNA_{MT}] \end{equation}Proteins
\begin{equation} \large \frac{d[ArsR]}{dt} = \alpha _{pArsR}\cdot[mRNA_{ArsR}]- \delta _{ArsR}[ArsR] - [ArsR|As] \end{equation} \begin{equation} \large \frac{d[MT]}{dt} = \alpha _{pMT}\cdot[mRNA_{MT}]- \delta _{MT}[MT] - [MT|As] \end{equation}Proteins with arsenic
See equations 7 and 8
Arsenic
\begin{equation} \large\frac{\mathrm{d[As_{FREEin}] } }{\mathrm{dt}} = (\frac{V_s}{V_c} \cdot V_{max} \cdot \frac{As_{e}}{K_{t}+As_{e}} + h_2 \delta _{ArsR|As}[ArsR|As] + h_3 \delta _{MT|As}[MT|As]) \end{equation}Parameters
Parameter |
Description |
Value |
References |
αmArsR |
Maximal transcription rate of ArsR |
Value |
References |
αmMT |
Maximal transcription rate of MT |
Value |
References |
αpArsR |
Maximal translation rate of ArsR |
Value |
References |
αpMT |
Maximal translation rate of MT |
Value |
References |
δmRNAArsR |
Degradation rate of ArsR mRNA |
Value |
References |
δmRNAMT |
Degradation rate of MT mRNA |
Value |
References |
δArsR |
Degradation rate of ArsR |
Value |
References |
δMT |
Degradation rate of MT |
Value |
References |
δArsR|As |
Degradation rate of ArsR|As complex |
Value |
References |
δMT|As |
Degradation rate of MT|As complex |
Value |
References |
proars |
Concentration of ars promoter |
Value |
References |
procons |
Concentration of constitutive promoter |
Value |
References |
KD1 |
Dissociation constant for the interaction of ArsR and proars |
Value |
References |
kt |
Kinetic constant for the transport of extracellular arsenic |
Value |
References |
h1 |
Hill coefficient for the interaction between ArsR and proars |
Value |
References |
h2 |
Hill coefficient for the interaction of ArsR and As |
Value |
References |
h3 |
Hill coefficient for the interaction of MT and As |
Value |
References |
VS/VC |
Relation between total solution volume(VS) and total cell volume (C) |
Value |
References |
Vmax |
Vmax for the Michaelis-Menten equation that describes As transport |
Value |
References |