Team:Slovenia

From 2012.igem.org

(Difference between revisions)
 
(84 intermediate revisions not shown)
Line 2: Line 2:
<head>
<head>
<meta http-equiv="X-UA-Compatible" content="IE=edge" />
<meta http-equiv="X-UA-Compatible" content="IE=edge" />
 +
 +
<!-- back to top>
 +
<div style="position:fixed; bottom:45px; right:30px; width:100px; height:66px; background-color:transparent;">
 +
<a href="#topofthepage">
 +
<table style="background-color:transparent;" onclick="window.location = '#topofthepage'" class="invisible" style="height:100%;">
 +
<tr class="invisible" style="background-color:transparent;">
 +
<td class="invisible" style="background-color:transparent;" valign="center">
 +
<img width="100px" src ="https://static.igem.org/mediawiki/2012/1/14/Svn12_hp_btt.png"></img>
 +
</td></tr></table>
 +
</a>
 +
</div-->
 +
<style type="text/css">
<style type="text/css">
Line 13: Line 25:
-
p {line-height:1.5em; margin:0 0 15px; text-align:left;}
+
p {line-height:1.5em; margin:0 0 15px; text-align:justify;}
h2 {font-size:1.8em; font-weight:400; margin:0 0 12px;}
h2 {font-size:1.8em; font-weight:400; margin:0 0 12px;}
Line 201: Line 213:
#cssmenu ul li > ul li{display:block; list-style:inside none; padding:0; margin:0; position:relative;}  
#cssmenu ul li > ul li{display:block; list-style:inside none; padding:0; margin:0; position:relative;}  
#cssmenu ul li > ul li a{ outline:none; display:block; position:relative; margin:0; padding:8px 20px; font:10pt Arial, Helvetica, sans-serif; color:#fff; text-decoration:none; text-shadow:1px 1px 0 rgba(0,0,0, 0.5); }  
#cssmenu ul li > ul li a{ outline:none; display:block; position:relative; margin:0; padding:8px 20px; font:10pt Arial, Helvetica, sans-serif; color:#fff; text-decoration:none; text-shadow:1px 1px 0 rgba(0,0,0, 0.5); }  
 +
#cssmenu ul li > ul li a table tr td span{ outline:none; display:block; position:relative; margin:0; padding:0px 0px; font:10pt Arial, Helvetica, sans-serif; color:#fff; text-decoration:none; text-shadow:1px 1px 0 rgba(0,0,0, 0.5); }
#cssmenu, #cssmenu > ul > li > ul > li a:hover
#cssmenu, #cssmenu > ul > li > ul > li a:hover
{ background:#043A6B;  
{ background:#043A6B;  
Line 230: Line 243:
-
table.splash {position:relative;}
+
table.splash {}
-
td.splash, th.splash {width:300px; height:300px;}
+
td.splash, th.splash {}
thead.splash{ background: #0C5DA5; color:#ffffff; border: 0px #d8d8d8 solid; }
thead.splash{ background: #0C5DA5; color:#ffffff; border: 0px #d8d8d8 solid; }
tbody .splash{ background: #fff; }
tbody .splash{ background: #fff; }
 +
 +
table.newtable {background-color:transparent;}
 +
td.newtable, th.newtable {background-color:transparent;}
 +
thead.newtable{ }
 +
tbody .newtable{}
 +
 +
a.invisible{}
 +
td.splash .ttip{
td.splash .ttip{
 +
  float:left;
position:absolute;
position:absolute;
-
left:100px;
+
  left:150px;
 +
  top:660px;
visibility:hidden;
visibility:hidden;
z-index:100;
z-index:100;
-
width:700px;  
+
width:700px;
opacity:0.85;
opacity:0.85;
-
background:cyan;
+
background:#dedede;
border-radius: 30px;
border-radius: 30px;
font-family: Arial, "Helvetica Neue", Helvetica, sans-serif;
font-family: Arial, "Helvetica Neue", Helvetica, sans-serif;
Line 248: Line 271:
}
}
 +
td.splash .ttip2{
 +
  float:left;
 +
position:absolute;
 +
  left:150px;
 +
  top:960px;
 +
visibility:hidden;
 +
z-index:100;
 +
width:700px;
 +
opacity:0.85;
 +
background:#dedede;
 +
border-radius: 30px;
 +
font-family: Arial, "Helvetica Neue", Helvetica, sans-serif;
 +
padding: 10px 10px 10px 10px;
 +
}
 +
 +
td.splash:hover > .ttip
 +
{
 +
visibility:visible;
 +
}
 +
 +
td.splash:hover > .ttip2
 +
{
 +
visibility:visible;
 +
}
 +
 +
/*
td.splash .pic{
td.splash .pic{
position:absolute;
position:absolute;
Line 270: Line 319:
}  
}  
 +
*/
</style>
</style>
Line 292: Line 342:
<body>
<body>
-
 
+
<a name="topofthepage" style="background-color:transparent;"></a>
<div id="banner">
<div id="banner">
 +
<a style="position:absolute; top:0px; left:490px;" href="https://2012.igem.org/Main_Page"><b></b></a>
</div>
</div>
Line 316: Line 367:
<li><a href='https://2012.igem.org/Team:Slovenia/TheSwitchDesignedTALregulators'><span>Designed TAL regulators</span></a></li>
<li><a href='https://2012.igem.org/Team:Slovenia/TheSwitchDesignedTALregulators'><span>Designed TAL regulators</span></a></li>
<li><a href='https://2012.igem.org/Team:Slovenia/TheSwitchMutualRepressorSwitch'><span>Mutual repressor switch</span></a></li>  
<li><a href='https://2012.igem.org/Team:Slovenia/TheSwitchMutualRepressorSwitch'><span>Mutual repressor switch</span></a></li>  
-
<li><a href='https://2012.igem.org/Team:Slovenia/TheSwitchPositiveFeedbackLoopSwitch'><span>Positive feedback loop switch</span></a></li>  
+
<li><a href='https://2012.igem.org/Team:Slovenia/TheSwitchPositiveFeedbackLoopSwitch'><table onclick="window.location = 'https://2012.igem.org/Team:Slovenia/TheSwitchPositiveFeedbackLoopSwitch';" class="newtable"><tr class="newtable"><td class="newtable"><span>Positive feedback loop switch</span></td><td class="newtable"><img style="margin-right:-15px;" width="25px" src="https://static.igem.org/mediawiki/2012/e/ee/Svn12_hp_new.png"></img></td></tr></table></a></li>
 +
    <li><a href='https://2012.igem.org/Team:Slovenia/TheSwitchControls'><table onclick="window.location = 'https://2012.igem.org/Team:Slovenia/TheSwitchControls';" class="newtable"><tr class="newtable"><td class="newtable"><span>Controls</span></td><td class="newtable"><img style="margin-right:-81px;" width="25px" src="https://static.igem.org/mediawiki/2012/e/ee/Svn12_hp_new.png"></img></td></tr></table></a></li>  
  </ul>
  </ul>
</li>
</li>
Line 324: Line 376:
<li><a href='https://2012.igem.org/Team:Slovenia/SafetyMechanismsEscapeTag'><span>Escape tag</span></a></li>  
<li><a href='https://2012.igem.org/Team:Slovenia/SafetyMechanismsEscapeTag'><span>Escape tag</span></a></li>  
<li><a href='https://2012.igem.org/Team:Slovenia/SafetyMechanismsTermination'><span>Termination</span></a></li>  
<li><a href='https://2012.igem.org/Team:Slovenia/SafetyMechanismsTermination'><span>Termination</span></a></li>  
-
<li><a href='https://2012.igem.org/Team:Slovenia/SafetyMechanismsMicrocapsuleDegradation'><span>Microcapsule degradation</span></a></li>  
+
    <li><a href="https://2012.igem.org/Team:Slovenia/SafetyMechanismsMicrocapsuleDegradation"><table  onclick="window.location = 'https://2012.igem.org/Team:Slovenia/SafetyMechanismsMicrocapsuleDegradation';" class="newtable"><tr class="newtable"><td class="newtable"><span>Microcapsule degradation</span></td><td class="newtable"><img style="margin-right:-15px;" width="25px" src="https://static.igem.org/mediawiki/2012/e/ee/Svn12_hp_new.png"></img></td></tr></table></a></li>  
  </ul>
  </ul>
</li>
</li>
Line 332: Line 384:
<li><a href='https://2012.igem.org/Team:Slovenia/ImplementationHepatitisC'><span>Hepatitis C</span></a></li>
<li><a href='https://2012.igem.org/Team:Slovenia/ImplementationHepatitisC'><span>Hepatitis C</span></a></li>
<li><a href='https://2012.igem.org/Team:Slovenia/ImplementationIschaemicHeartDisease'><span>Ischaemic heart disease</span></a></li>  
<li><a href='https://2012.igem.org/Team:Slovenia/ImplementationIschaemicHeartDisease'><span>Ischaemic heart disease</span></a></li>  
 +
    <li><a href='https://2012.igem.org/Team:Slovenia/ImplementationImpact'><table onclick="window.location = 'https://2012.igem.org/Team:Slovenia/ImplementationImpact';" class="newtable"><tr class="newtable"><td class="newtable"><span>Impact</span></td><td class="newtable"><img style="margin-right:-86px;" width="25px" src="https://static.igem.org/mediawiki/2012/e/ee/Svn12_hp_new.png"></img></td></tr></table></a></li>
 
 
  </ul>
  </ul>
Line 339: Line 392:
  <ul>
  <ul>
<li><a href='https://2012.igem.org/Team:Slovenia/Modeling'><span>Overview</span></a></li>
<li><a href='https://2012.igem.org/Team:Slovenia/Modeling'><span>Overview</span></a></li>
-
<li><a href='https://2012.igem.org/Team:Slovenia/ModelingPK'><span>Pharmacokinetics</span></a></li>
+
    <li><a href='https://2012.igem.org/Team:Slovenia/ModelingPK'><table onclick="window.location = 'https://2012.igem.org/Team:Slovenia/ModelingPK';" class="newtable"><tr class="newtable"><td class="newtable"><span>Pharmacokinetics</span></td><td class="newtable"><img style="margin-right:-15px;" width="25px" src="https://static.igem.org/mediawiki/2012/e/ee/Svn12_hp_new.png"></img></td></tr></table></a></li>
<li><a href='https://2012.igem.org/Team:Slovenia/ModelingMethods'><span>Modeling methods</span></a></li>
<li><a href='https://2012.igem.org/Team:Slovenia/ModelingMethods'><span>Modeling methods</span></a></li>
<li><a href='https://2012.igem.org/Team:Slovenia/ModelingMutualRepressorSwitch'><span>Mutual repressor switch</span></a></li>
<li><a href='https://2012.igem.org/Team:Slovenia/ModelingMutualRepressorSwitch'><span>Mutual repressor switch</span></a></li>
<li><a href='https://2012.igem.org/Team:Slovenia/ModelingPositiveFeedbackLoopSwitch'><span>Positive feedback loop switch</span></a></li>
<li><a href='https://2012.igem.org/Team:Slovenia/ModelingPositiveFeedbackLoopSwitch'><span>Positive feedback loop switch</span></a></li>
-
<li><a href='https://2012.igem.org/Team:Slovenia/ModelingQuantitativeModel'><span>Quantitative and stability model</span></a></li>
+
<li><a href='https://2012.igem.org/Team:Slovenia/ModelingQuantitativeModel'><table onclick="window.location = 'https://2012.igem.org/Team:Slovenia/ModelingQuantitativeModel';" class="newtable"><tr class="newtable"><td class="newtable"><span>Experimental model</span></td><td class="newtable"><img style="margin-right:-15px;" width="25px" src="https://static.igem.org/mediawiki/2012/e/ee/Svn12_hp_new.png"></img></td></tr></table></a></li>
 +
    <li><a href='https://2012.igem.org/Team:Slovenia/ModelingInteractiveSimulations'><table onclick="window.location = 'https://2012.igem.org/Team:Slovenia/ModelingInteractiveSimulations';" class="newtable"><tr class="newtable"><td class="newtable"><span>Interactive simulations</span></td><td class="newtable"><img style="margin-right:-15px;" width="25px" src="https://static.igem.org/mediawiki/2012/e/ee/Svn12_hp_new.png"></img></td></tr></table></a></li>
  </ul>
  </ul>
</li>
</li>
Line 354: Line 408:
  <ul>
  <ul>
<li><a href='https://2012.igem.org/Team:Slovenia/Notebook'><span>Experimental methods</span></a></li>
<li><a href='https://2012.igem.org/Team:Slovenia/Notebook'><span>Experimental methods</span></a></li>
-
<li><a href='https://2012.igem.org/Team:Slovenia/NotebookLablog'><span>Lablog</span></a></li>
+
    <li><a href='https://2012.igem.org/Team:Slovenia/NotebookLablog'><table onclick="window.location = 'https://2012.igem.org/Team:Slovenia/NotebookLablog';" class="newtable"><tr class="newtable"><td class="newtable"><span>Lablog</span></td><td class="newtable"><img style="margin-right:-90px;" width="25px" src="https://static.igem.org/mediawiki/2012/e/ee/Svn12_hp_new.png"></img></td></tr></table></a></li>
<li><a href='https://2012.igem.org/Team:Slovenia/NotebookLabSafety'><span>Lab safety</span></a></li>  
<li><a href='https://2012.igem.org/Team:Slovenia/NotebookLabSafety'><span>Lab safety</span></a></li>  
  </ul>
  </ul>
Line 363: Line 417:
<li><a href='https://2012.igem.org/Team:Slovenia/Society'><span>Human practice</span></a></li>
<li><a href='https://2012.igem.org/Team:Slovenia/Society'><span>Human practice</span></a></li>
<li><a href='https://2012.igem.org/Team:Slovenia/SocietyScientists'><span>Scientists</span></a></li>
<li><a href='https://2012.igem.org/Team:Slovenia/SocietyScientists'><span>Scientists</span></a></li>
-
<li><a href='https://2012.igem.org/Team:Slovenia/SocietyMedicalDoctors'><span>Medical doctors</span></a></li>
+
<li><a href='https://2012.igem.org/Team:Slovenia/SocietyMedicalDoctors'><span>Physicians</span></a></li>
<li><a href='https://2012.igem.org/Team:Slovenia/SocietyEthics'><span>Ethics, safety and regulations</span></a></li>
<li><a href='https://2012.igem.org/Team:Slovenia/SocietyEthics'><span>Ethics, safety and regulations</span></a></li>
<li><a href='https://2012.igem.org/Team:Slovenia/SocietyPatients'><span>Patients</span></a></li>
<li><a href='https://2012.igem.org/Team:Slovenia/SocietyPatients'><span>Patients</span></a></li>
-
<li><a href='https://2012.igem.org/Team:Slovenia/SocietyMedia'><span>Media and general public</span></a></li>  
+
<li><a href='https://2012.igem.org/Team:Slovenia/SocietyMedia'><span>Journalists and general public</span></a></li>  
<li><a href='https://2012.igem.org/Team:Slovenia/SocietyOutreach'><span>Outreach</span></a></li>
<li><a href='https://2012.igem.org/Team:Slovenia/SocietyOutreach'><span>Outreach</span></a></li>
<li><a href='https://2012.igem.org/Team:Slovenia/SocietyQuestionnaire'><span>Questionnaire</span></a></li>  
<li><a href='https://2012.igem.org/Team:Slovenia/SocietyQuestionnaire'><span>Questionnaire</span></a></li>  
Line 377: Line 431:
<li><a href='https://2012.igem.org/Team:Slovenia/Team'><span>Team members</span></a></li>
<li><a href='https://2012.igem.org/Team:Slovenia/Team'><span>Team members</span></a></li>
<li><a href='https://2012.igem.org/Team:Slovenia/TeamAttributions'><span>Attributions</span></a></li>
<li><a href='https://2012.igem.org/Team:Slovenia/TeamAttributions'><span>Attributions</span></a></li>
 +
<li><a href='https://2012.igem.org/Team:Slovenia/TeamCollaborations'><table  onclick="window.location = 'https://2012.igem.org/Team:Slovenia/TeamCollaborations';" class="newtable"><tr class="newtable"><td class="newtable"><span>Collaborations</span></td><td class="newtable"><img style="margin-right:-20px;" width="25px" src="https://static.igem.org/mediawiki/2012/e/ee/Svn12_hp_new.png"></img></td></tr></table></a></li>
<li><a href='https://2012.igem.org/Team:Slovenia/TeamGallery'><span>Gallery</span></a></li>  
<li><a href='https://2012.igem.org/Team:Slovenia/TeamGallery'><span>Gallery</span></a></li>  
<li><a href='https://2012.igem.org/Team:Slovenia/TeamSponsors'><span>Sponsors</span></a></li>  
<li><a href='https://2012.igem.org/Team:Slovenia/TeamSponsors'><span>Sponsors</span></a></li>  
Line 386: Line 441:
</div> <!-- end menu -->
</div> <!-- end menu -->
 +
 +
<div id="main">
<div id="main">
<br/>
<br/>
 +
 +
<!-- dummy link na bannerju -->
 +
<a href="https://2012.igem.org/Main_Page">
 +
<div id="dummy" style="background-color:transparent; position:absolute; left:870px; top:25px; width:115px; height:80px; z-index:100; opacity:0.0;">
 +
</div>
 +
</a>
<!-- ikona za slovenski prevod -->
<!-- ikona za slovenski prevod -->
-
<a href="http://212.235.188.113/wiki/index.php/Final_design/Slovensko"><img style="float:right;" src="http://212.235.188.113/wiki/images/f/fe/Svn12_slovensko_lang.png"></img></a><br/>
+
<a href="https://2012.igem.org/Team:Slovenia/Slovenian"><img style="float:right;" src="https://static.igem.org/mediawiki/2012/f/fe/Svn12_slovensko_lang.png"></img></a><br/>
Line 398: Line 461:
<tr class="summary">
<tr class="summary">
<td class="summary" style="font-size:110%;">
<td class="summary" style="font-size:110%;">
-
<strong style="font-size:120%;">Challenge</strong><br/>
+
<strong style="font-size:120%;">The Challenge</strong><br/>
<br />
<br />
-
<p>Biological drugs are very effective and
+
<p>Biological drugs such as hormones, enzymes, cytokines or antibodies are increasingly used to treat different diseases. Due to systemic administration, these drugs often have adverse effects. Additionally, the high cost of biopharmaceuticals imposes a heavy burden on health systems.</p>
-
are increasingly used to treat different diseases. Often, due to their systemic administration,  
+
<p>We aimed to use the principles of synthetic biology to develop an advanced and safe method of <i>in situ</i> production of biological drugs to increase the quality of patients' lives. This system should increase compliance to therapy, decreas the number of required invasive drug administrations and enable advanced multistage therapy while local administration could reduce the side effects. </p>
-
adverse effects are observed. Additionally high cost of biopharmaceutials imposes a great burden  
+
<p>We addressed this challenge by implementing microencapsulated engineered mammalian cells that can be regulated from the outside to produce different therapeutics. This system should be effective, reliable, safe and potentially more cost-effective.</p>
-
on health systems. We aimed to develop a safe and cost-effective biological delivery system for
+
-
biopharmaceuticals, which would increase the quality of patients' lives. This system would
+
-
increase compliance to the therapy, minimize the number of required invasive procedures,
+
-
introduce more effective multistage therapy while the local administration will reduce the side-effects. </p>
+
-
<p>We addressed this challenge by implementing microencapsulated engineered mammalian cells  
+
-
that can be regulated from the outside to produce different therapeutics and comprise safety mechanisms.</p>
+
</td>
</td>
</tr>
</tr>
Line 414: Line 471:
<!-- /summary table -->
<!-- /summary table -->
 +
 +
<br />
<!-- splash table -->
<!-- splash table -->
<table class="splash" align="center">
<table class="splash" align="center">
 +
 +
 +
 +
 +
<tbody  class="splash">
<tbody  class="splash">
<tr class="splash">
<tr class="splash">
<td class="splash">
<td class="splash">
-
<img class="pic" src="https://static.igem.org/mediawiki/2012/0/0b/Svn12_homepage_1switch.png" width="300"  height="300" style="left:0px; top:0px;"/>
+
<a href="https://2012.igem.org/Team:Slovenia/TheSwitch"><img class="pic" src="https://static.igem.org/mediawiki/2012/0/0b/Svn12_homepage_1switch.png" width="300"  height="300" /></a>
-
<div class="ttip" style="top:100px;">
+
<div class="ttip">
<strong>The switch</strong>
<strong>The switch</strong>
-
<p>We designed a <strong>new type of bistable toggle switch for mammalian cells</strong>  
+
 
-
based on designed DNA-binding proteins, which would allow the simultaneous introduction of  
+
<p> Switches are the basic regulatory elements through which the state of cells can be controlled. We <b>designed a new type of a universal bistable toggle switch for mammalian cells</b> based on designed DNA-binding proteins. Its properties enable simultaneous introduction of several orthogonal switches and construction of complex logic devices. We found that a <b>classic toggle switch topology is ineffective</b> if based on TAL effectors. Our modeling explaines that the reason for this is  noncooperative binding of monomeric TAL effectors to DNA. We solved this problem by introducing nonlinearity through the addition of the addition of <b>positive feedback loops</b> consisting of pairs of TAL activators and repressors competing for binding. This arrangement resulted, both theoretically and experimentally in mammalian cells, in functional switch that can be regulated by small molecule inducers. <a href="https://2012.igem.org/Team:Slovenia/TheSwitch">Read more...</a></p>
-
several orthogonal switches and construction of complex logic devices.  
+
-
We discovered that the <strong>classical toggle switch topology was ineffective</strong> since TAL effectors bind
+
-
noncooperatively as monomers. We solved this problem by designing a switch comprising a pair of  
+
-
mutual repressors (TAL-KRAB) coupled with a pair of activators (TAL-VP16) that form a <strong>positive feedback loop</strong>.  
+
-
This arrangement resulted in experimental confirmation of bistability in mammalian cells that can be regulated by  
+
-
small molecule inducers. <a>Read more...</a></p>
+
</div>
</div>
</td>
</td>
<td class="splash">
<td class="splash">
-
<img class="pic" src="https://static.igem.org/mediawiki/2012/a/a8/Svn12_homepage_2safety.png" width="300" height="300" style="left:300px; top:0px;"/>
+
<a href="https://2012.igem.org/Team:Slovenia/SafetyMechanisms"><img class="pic" src="https://static.igem.org/mediawiki/2012/a/a8/Svn12_homepage_2safety.png" width="300" height="300"/></a>
-
<div class="ttip" style="top:100px;">
+
<div class="ttip">
<strong>Safety</strong>
<strong>Safety</strong>
-
<p>We tailored the benefits of microencapsulated engineered cells by designing safety mechanisms
+
<p>In order to enable safe application of engineered cells in the microencapsulation based therapy we designed three safety mechanisms to <b>degrade the alginate capsules </b> at the end of the therapy, terminate the therapeutic cells by induction of apoptosis and to <b>tag any escaped cells for elimination</b> by the host's natural killer cells. <a href="https://2012.igem.org/Team:Slovenia/SafetyMechanisms">Read more...</a></p>
-
to degrade the alginate capsules at the end of therapy,  
+
-
terminate therapeutic cells by induction of apoptosis and introduction of an escape killing tag
+
-
that marks potential escaped cells to destruction by the host natural killer cells. <a>Read more...</a></p>
+
</div>
</div>
</td>
</td>
<td class="splash">
<td class="splash">
-
<img class="pic" src="https://static.igem.org/mediawiki/2012/3/3d/Svn12_homepage_3implementation.png" width="300" height="300" style="left:600px; top:0px;"/>
+
<a href="https://2012.igem.org/Team:Slovenia/Implementation"><img class="pic" src="https://static.igem.org/mediawiki/2012/3/3d/Svn12_homepage_3implementation.png" width="300" height="300" /></a>
-
<div class="ttip" style="top:100px;">
+
<div class="ttip">
<strong>Implementation</strong>
<strong>Implementation</strong>
-
<p>We implemented the effector therapeutics for therapy of hepatitis C  
+
<p>In <b>consultations with medical experts</b> we tailored our therapeutic devices based on implanted microencapsulated engineered cells to the treatments of hepatitis C and ischaemic heart disease by <i>in situ</i> <b>production of therapeutic protein effectors whose efficiency has already been demonstrated</b>. In agreement with our pharmacokinetic models, this strategy could <b>reduce side effects and improve efficiency of these therapies</b>. Switching between production of effectors with antiviral or anti-inflammatory and tissue regenerative effect could be regulated by administrating a small molecule inducer.
-
and ischaemic heart disease, by introducing five different therapeutic proteins that could,
+
  <a href="https://2012.igem.org/Team:Slovenia/Implementation">Read more...</a></p>
-
in agreement with our pharmacokinetic models, reduce the side effects and improve the efficiency of the therapy.
+
-
Switching between production of effectors with antiviral or anti-inflammatory effect and tissue regeneration
+
-
could be regulated by the physician by delivery of small molecule inducers from the outside. <a>Read more...</a></p>
+
</div>
</div>
</td>
</td>
 +
 +
</tr>
</tr>
Line 463: Line 517:
<tr class="splash">
<tr class="splash">
<td class="splash">
<td class="splash">
-
<img class="pic" src="https://static.igem.org/mediawiki/2012/0/0a/Svn12_homepage_4modelling.png" width="300" height="300" style="left:0px; top:300px;"/>
+
<a href="https://2012.igem.org/Team:Slovenia/Modeling"><img class="pic" src="https://static.igem.org/mediawiki/2012/0/0a/Svn12_homepage_4modelling.png" width="300" height="300" /></a>
-
<div class="ttip" style="top:400px;">
+
<div class="ttip2">
<strong>Modeling</strong>
<strong>Modeling</strong>
-
<p>Exhaustive modeling demonstrated that the classical toggle switch is not stable without cooperativity  
+
<p>Modeling was used to simulate and improve the properties of the switch and the pharmacokinetic distribution of drugs in the tissue, which is required for an effective therapy and decreased side effects. We introduced <b>improved methods of switch simulations</b> such as a quantitative parameter derivation and algorithmic/mixed simulation that can capture mixed regulator binding to operators. We also included into the wiki a server <b>for online switch simulation</b>. A pharmacokinetic model of the local delivery of therapeutics by microencapsulated cells predicted that this type of drug delivery should have reduced systemic side effects.</p><p><b>Exhaustive modeling</b> of the switch <b>demonstrated that the classic genetic toggle switch arrangement is not stable without cooperativity</b>, but it <b>confirmed functionality and improved robustness of the our switch design</b> with <b>two positive feedback loops. This topology does not require cooperativity since nonlinearity is introduced by the positive feedback loop. <a href="https://2012.igem.org/Team:Slovenia/Modeling">Read more...</a></b></p>  
-
while it confirmed the improved robustness of the switch that included two positive feedback loops.
+
-
This topology does not require cooperativity since the nonlinearity is introduced by positive feedback loop.
+
-
Pharmacokinetic model of the local delivery of therapeutics by microencapsulated cells predicted that this system
+
-
has reduced systemic side effects. <a>Read more...</a></p>
+
</div>
</div>
</td>
</td>
<td class="splash">
<td class="splash">
-
<img class="pic" src="https://static.igem.org/mediawiki/2012/f/fa/Svn12_homepage_5society.png" width="300" height="300" style="left:300px; top:300px;"/>
+
<a href="https://2012.igem.org/Team:Slovenia/Society"><img class="pic" src="https://static.igem.org/mediawiki/2012/f/fa/Svn12_homepage_5society.png" width="300" height="300" /></a>
-
<div class="ttip" style="top:400px;">
+
<div class="ttip2">
<strong>Society</strong>
<strong>Society</strong>
-
<p>Different aspects of the project as well as medical applications of  
+
<p>Different aspects of general <b>medical applications of synthetic biology</b> and our project specifically <b>were discussed with a wide range of stakeholders, including medical professionals, patients</b>, experts on the law and ethics of GMO use and release, scientists, the media and the general public<b> that will all have to participate in a successful introduction of synthetic biology applications to clinical use</b>. We attempted to organize a <b>network of Slovenian high schools</b> to share the excitement of synthetic biology with <b>younger generations</b> and to demonstrate its application in <b>medicine and other fields</b>. <a href="https://2012.igem.org/Team:Slovenia/Society">Read more...</a></p>
-
synthetic biology were discussed with a wide range of stakeholders,  
+
-
including medical professionals, patients, regulators, general public and
+
-
scientists that will support introduction of this technology into clinical use.
+
-
We involved a network of high school students into the dissemination.<a>Read more...</a></p>
+
</div>
</div>
</td>
</td>
<td class="splash">
<td class="splash">
-
<img class="pic" src="https://static.igem.org/mediawiki/2012/d/d2/Svn12_homepage_6future.png" width="300" height="300" style="left:600px; top:300px;"/>
+
<a href="https://2012.igem.org/Team:Slovenia/Implementation"><img class="pic" src="https://static.igem.org/mediawiki/2012/d/d2/Svn12_homepage_6future.png" width="300" height="300" /></a>
-
<div class="ttip" style="top:400px;">
+
<div class="ttip2">
<strong>Perspectives</strong>
<strong>Perspectives</strong>
<ul style="padding-left:30px;">
<ul style="padding-left:30px;">
-
<li>the safety device including termination, escape and degradation component will allow implementation for different therapeutic purposes,</li>
+
<li> We anticipate that designed DNA-binding element-based transcriptional factor logic will play a very important role in the development of synthetic biology,</li>
-
<li>stable cell lines comprising switch with the selected therapeutic effectors and safety mechanisms will be established,</li>
+
<li>TAL-based switches allow simultaneous introduction of multiple switches to adopt multiple cellular states with numerous medical and other applications ,</li>
-
<li>we plan to initiate in vivo tests first on ischaemia and wound healing,</li>
+
<li><b>The safety</b> mechanisms, <b>including the inducible leak-free termination (prodrug), escape detection and capsule degradation components will allow implementation for different therapeutic purposes</b>,</li>
-
<li>the designed orthogonal TAL-transcriptional factor logics will allow introduction multistability from several parallel switches and other complex logical devices.</li>
+
<li>for an effective application <b>stable cell lines</b> containing integrated switches with selected therapeutic effectors and safety mechanisms will have to be established, most likely by the use of human artificial chromosomes,</li>
 +
<li>we plan to <b>initiate <i>in vivo</i> experiments</b> first <b>on ischaemia and wound healing</b>.</li>
</ul>
</ul>
-
<p><a>Read more...</a></p>
+
<p><a href="https://2012.igem.org/Team:Slovenia/Implementation">Read more...</a></p>
</div>
</div>
</td>
</td>
</tr>
</tr>
</tbody>
</tbody>
 +
 +
 +
 +
</table>  
</table>  
<!-- end splash-->
<!-- end splash-->
Line 511: Line 562:
<tr class="summary">
<tr class="summary">
<td class="summary" style="font-size:110%;">
<td class="summary" style="font-size:110%;">
-
<strong style="font-size:120%;">Abstract for non-scientists</strong><br/>
+
<strong style="font-size:120%;">Abstract in plain english</strong><br/>
<br />
<br />
-
<p>We designed a new type of therapy where we modify human cells,  
+
<p>Biological drugs are being used ever more often as advanced drugs for the treatment of numerous diseases, due to their more specific mode of action. In current therapies the biological drugs are usually distributed more or less throughout the whole body, although each function should often be restricted to a specific organ or tissue. This can cause serious side effects, requires larger dosages and consequently raises the price of therapy. Our solution to this problem was to implant cells producing biological drugs inside the very tissue where the drug is required. The drug producing cells are safely sealed inside microcapsules that prevent cells from spreading throughout the body and protect them from destruction by cells of the host immune system. We constructed a device that allows implanted cells to produce different types of drugs while switching between those production states can be controlled from the outside by a physician, depending on the stage of the disease. We designed our device specifically for the therapy of hepatitis C or heart attack. Against hepatitis C the engineered cells produce a protein with antiviral activity, whose biological activity we have tested and confirmed. After the state of the cells is switched, a protein that improves liver regeneration would be produced. For the therapy after a heart attack we designed cells to suppress local inflammation and promote formation of new blood vessels only around the affected tissue. A physician may initiate self-destruction of the therapeutic cells and capsules by an outside stimulus when the therapy is complete or at any other given time. We believe our system to be safe, effective and applicable in the real world for the therapy of different types of diseases.</p>
-
pack them into small capsules and introduce into the diseased tissue.
+
-
In order to make this therapy useful we invented new type of switches that will allow
+
-
the medical doctors to turn on or off production of different biological drug in the patient.
+
-
At the end of the therapy the capsule will be degraded and cells that produced drugs will be  
+
-
destroyed. For the first applications we selected therapy of hepatitis C, where we induce production
+
-
of drug that has antiviral activity and at the later stage a drug that helps regeneration of liver.  
+
-
For the therapy of heart infarction we designed cells that suppress inflammation and promote formation  
+
-
of new blood vessels around the affected tissue. In our experiments we demonstrated function of new
+
-
devices that have to be integrated into final therapy. Students also made mathematical model of switch
+
-
and on the distribution of drugs throughout body that should decrease the side effects of therapy.</p>
+
</td>
</td>
Line 531: Line 572:
-
<!-- PREZI >
 
-
<table class="invisible" style="width:50%;">
 
-
<tbody  class="invisible">
 
-
<tr class="normal"><td class="invisible">
 
-
<div class="prezi-player"><style type="text/css" media="screen">.prezi-player { width: 800px; } .prezi-player-links { text-align: center; }</style><object id="prezi_gkmrxcu7r3gv" name="prezi_gkmrxcu7r3gv" classid="clsid:D27CDB6E-AE6D-11cf-96B8-444553540000" width="800" height="600"><param name="movie" value="http://prezi.com/bin/preziloader.swf"/><param name="allowfullscreen" value="true"/><param name="allowFullScreenInteractive" value="true"/><param name="allowscriptaccess" value="always"/><param name="bgcolor" value="#ffffff"/><param name="flashvars" value="prezi_id=gkmrxcu7r3gv&amp;lock_to_path=1&amp;color=ffffff&amp;autoplay=no&amp;autohide_ctrls=0"/><embed id="preziEmbed_gkmrxcu7r3gv" name="preziEmbed_gkmrxcu7r3gv" src="http://prezi.com/bin/preziloader.swf" type="application/x-shockwave-flash" allowfullscreen="true" allowFullScreenInteractive="true" allowscriptaccess="always" width="800" height="600" bgcolor="#ffffff" flashvars="prezi_id=gkmrxcu7r3gv&amp;lock_to_path=1&amp;color=ffffff&amp;autoplay=no&amp;autohide_ctrls=0"></embed></object><div class="prezi-player-links"></div></div>
 
-
</td></tr>
+
<!-- youtube video -->
 +
<p>
 +
<table class="invisible" style="width:60%;">
 +
<tbody  class="invisible">
 +
<tr class="invisible">
 +
<td class="invisible">
 +
<iframe width="560" height="315" src="http://www.youtube.com/embed/9HBQbR42KWQ" frameborder="0" allowfullscreen></iframe>
 +
</td>
 +
</tr>
</tbody>
</tbody>
-
</table>  
+
</table>
-
< /PREZI -->
+
<!-- end table-->
-
 
+
<!-- youtube end -->
-
 
+
-
 
+
Line 552: Line 594:
<tr class="outcome">
<tr class="outcome">
<td class="outcome" style="font-size:110%;">
<td class="outcome" style="font-size:110%;">
-
<strong style="font-size:120%;">Outcome</strong><br/>
+
<strong style="font-size:120%;">Achievements in technical details</strong><br/>
 +
<br />
-
<br />
 
-
<strong>Achievements in technical details:</strong>
 
<ul style="padding-left: 30px;">
<ul style="padding-left: 30px;">
-
<li>this is the first experimental implementation of a bistable toggle switch based on noncooperative DNA-binding elements and the first bistable switch based on designed DNA-binding elements,</li>
+
<li>We present the first experimental implementation of a bistable toggle switch in mammalian cells based on noncooperative DNA-binding proteins as well as the first demonstration of a bistable switch based on designed DNA-binding proteins,</li>
-
<li>we designed and tested bistable toggle switch for mammalian cells based on orthogonal TAL-repressors and activators,</li>
+
<li>a bistable toggle switch based on orthogonal TAL-repressors and activators was designed and tested in mammalian cells,</li>
-
<li>modeling demonstrated improved robustness of a switch based on a positive feedback loop with respect to leaky transcription,</li>
+
<li>mathematical modeling demonstrated improved robustness of a switch based on a positive feedback loop with respect to leaky transcription,</li>
-
<li>introduced three safety mechanisms into microencapsulated mammalian cells:  
+
<li>we introduced three safety mechanisms into microencapsulated mammalian cells:  
<ul class="circle" style="padding-left: 50px;">
<ul class="circle" style="padding-left: 50px;">
-
<li>escape tag for cell elimination by natural killer cells,</li>
+
<li>a tag for escaped cells enabling elimination by natural killer cells,</li>
-
<li>secretory alginate lyase for degradation of alginate microcapsules,</li>
+
<li>a secretory alginate lyase for degradation of alginate microcapsules,</li>
-
<li>induction of apoptosis of therapeutic cells by the introduction of a prodrug,</li>
+
<li>apoptosis of therapeutic cells initiated by the addition of a prodrug.</li>
</ul>
</ul>
</li>
</li>
-
<li>introduced IFN-alpha/HGH effector pair for the therapy of hepatitis C to inactivate the virus and promote liver regeneration in the later stage,</li>
+
<li>We introduced interferon alpha and hepatocyte growth factor as an effector pair for the therapy of hepatitis C to inactivate the virus followed by the promotion of liver regeneration, </li>
-
<li>introduced anakinra/VEGF-PDGF-B for therapy of ischaemia to suppress inflammation and promote angiogenesis in the later stage,</li>
+
<li> we introduced IL-1 receptor antagonist (anakinra) and vascular endothelial growth factor/platelet-derived growth factor BB as effectors for therapy of ischaemia to suppress inflammation followed by the local promotion of angiogenesis,</li>
-
<li>deposited 89 BioBricks,</li>
+
<li>we deposited 89 BioBricks to the Registry and used most of them in functional devices,</li>
-
<li>improved an existing BioBrick.</li>
+
<li>we improved an existing BioBrick.</li>
</ul>
</ul>
</td>
</td>
Line 576: Line 617:
</table>
</table>
 +
<br />
 +
<br />
 +
<strong style="font-size:120%;font-color:gray;">Project sponsors</strong><br/>
 +
 +
<table class="invisible">
 +
<tbody  class="invisible">
 +
<tr class="invisible">
 +
 +
<!--- column 1--->
 +
<td class="invisible" valign="top" width="300px">
 +
<a href="http://enfist.si/"><img width="100%" src="https://static.igem.org/mediawiki/2012/1/18/Svn12_sponsors_enfist.png"></img></a><br/><br/><br/>
 +
<a href="http://www.lek.si/"><img  width="80%" src="https://static.igem.org/mediawiki/2012/f/f1/Svn12_sponsors_lek.jpg"></a></img><br/><br/><br/>
 +
<a href="http://www.kemomed.si/"><img width="50%" src="https://static.igem.org/mediawiki/2012/d/da/Svn12_sponsors_kemomed.jpg" ></a></img><br/><br/><br/>
 +
<a href="http://www.roche.si/"><img width="50%" src="https://static.igem.org/mediawiki/2012/3/3b/Svn12_sponsors_roche.jpg"></a></img><br/><br/><br/>
 +
<a href="http://www.osir.si/"><img width="40%" src="https://static.igem.org/mediawiki/2012/7/75/Svn12_sponsors_osir.jpeg"></a></img><br/><br/><br/>
 +
<a href="http://www.adria.si/"><img width="40%" src="https://static.igem.org/mediawiki/2012/9/9f/Svn12_sponsors_adria.png"></a></img>
 +
 +
</td>
 +
 +
<!--- column 2--->
 +
<td class="invisible"  valign="top" width="300px">
 +
<a href="http://www.ki.si/"><img width="100%" src="https://static.igem.org/mediawiki/2012/7/7e/Svn12_sponsors_ki.png" ></a></img><br/><br/><br/>
 +
<a href="http://www.fri.uni-lj.si/"><img width="80%" src="https://static.igem.org/mediawiki/2012/6/6b/Svn12_sponsors_fri.png" ></img></a><br/><br/><br/>
 +
<a href="http://www.mf.uni-lj.si/"><img width="60%" src="https://static.igem.org/mediawiki/2012/a/a1/Svn12_sponsors_mf.PNG"/></a><br/><br/><br/>
 +
<a href="http://www.krka.si/"><img width="50%" src="https://static.igem.org/mediawiki/2012/8/84/Svn12_sponsors_krka.png"></img></a><br/><br/><br/>
 +
<a href="http://www.erasynbio.eu/"><img width="60%" src="https://static.igem.org/mediawiki/2012/f/ff/Svn12_logo_eransynbio.jpg"></a></img><br/><br/><br/>
 +
<a href="http://www.omega.si/"><img width="65%" src="https://static.igem.org/mediawiki/2012/4/45/Svn12_sponsors_omega.png"></img></a><br/><br/><br/><br/>
 +
<a href="http://eu.idtdna.com/"><img width="60%" src="https://static.igem.org/mediawiki/2012/9/9e/Svn12_sponsors_itdna.png"></img></a><br/><br/><br/>
 +
</td>
 +
 +
 +
<!--- column 3--->
 +
<td class="invisible"  valign="top" width="300px">
 +
<a href="http://www.sklad-kadri.si/"><img width="80%" src="https://static.igem.org/mediawiki/2012/b/b6/Svn12_sponsors_javniskladrs.png"></img></a><br/><br/><br/>
 +
<a href="http://www.arrs.gov.si"><img width="95%" src="https://static.igem.org/mediawiki/2012/d/dc/Svn12_sponsors_arrs.gif"></img><br/><br/><br/>
 +
<a href="http://www.bf.uni-lj.si/"><img width="65%" src="https://static.igem.org/mediawiki/2012/9/97/Svn12_logo_biotech.jpg"></a></img><br/><br/><br/>
 +
<a href="http://www.fkkt.uni-lj.si/en/"><img  width="70%" src="https://static.igem.org/mediawiki/2012/5/59/Svn12_logo_fkkt.jpg"></img></a><br/><br/><br/>
 +
<a href="http://www.eimv.si/"><img width="70%" src="https://static.igem.org/mediawiki/2012/5/5f/Svn12_logo_eimv.jpg"></img></a><br/><br/><br/><br/>
 +
<a href="http://www.chemass.si/"><img width="60%" src="https://static.igem.org/mediawiki/2012/5/5f/Svn12_sponsors_chemass.PNG"></img></a>
 +
</td>
-
<!-- table example >
 
-
<table class="normal">
 
-
<thead class="normal">
 
-
<tr class="normal"><th class="normal">Column 1</th><th>Column 2</th><th>Column 3</th></tr>
 
-
</thead>
 
-
<tbody  class="normal">
 
-
<tr class="normal"><td class="normal">TALBS-pMIN-Luc</td><td class="normal">TALBS-pMIN-YFP</td><td class="normal">TALBS-pMIN-YFP</td></tr>
 
-
<tr class="normal"><td class="normal">NicTAL-BS Part1</td><td class="normal">TAL95-BS Part2</td><td class="normal">TAL95-BS Part1</td></tr>
 
-
<tr class="normal"><td class="normal">NEB 4</td><td class="normal">Fermentas B</td><td class="normal">pCMV-mCit</td></tr>
 
</tbody>
</tbody>
</table>  
</table>  
-
<!-- end table example -->
 
Line 595: Line 666:
 +
<div style="clear:both"></div>
 +
 +
 +
 +
 +
<!-- Start of StatCounter Code for Default Guide -->
 +
<b>Number of visits:
 +
<script type="text/javascript">
 +
var sc_project=8388055;
 +
var sc_invisible=0;
 +
var sc_security="76d66c5e";
 +
var sc_text=2;
 +
</script>
 +
<script type="text/javascript"
 +
src="http://www.statcounter.com/counter/counter.js"></script>
 +
<noscript><div class="statcounter"><a title="free hit
 +
counter" href="http://statcounter.com/free-hit-counter/"
 +
target="_blank"><img class="statcounter"
 +
src="http://c.statcounter.com/8388055/0/76d66c5e/0/"
 +
alt="free hit counter"></a></div></noscript>
 +
</b>
 +
<!-- End of StatCounter Code for Default Guide -->
</div>
</div>
<!--</div>-->
<!--</div>-->
 +

Latest revision as of 21:11, 26 October 2012



The Challenge

Biological drugs such as hormones, enzymes, cytokines or antibodies are increasingly used to treat different diseases. Due to systemic administration, these drugs often have adverse effects. Additionally, the high cost of biopharmaceuticals imposes a heavy burden on health systems.

We aimed to use the principles of synthetic biology to develop an advanced and safe method of in situ production of biological drugs to increase the quality of patients' lives. This system should increase compliance to therapy, decreas the number of required invasive drug administrations and enable advanced multistage therapy while local administration could reduce the side effects.

We addressed this challenge by implementing microencapsulated engineered mammalian cells that can be regulated from the outside to produce different therapeutics. This system should be effective, reliable, safe and potentially more cost-effective.


The switch

Switches are the basic regulatory elements through which the state of cells can be controlled. We designed a new type of a universal bistable toggle switch for mammalian cells based on designed DNA-binding proteins. Its properties enable simultaneous introduction of several orthogonal switches and construction of complex logic devices. We found that a classic toggle switch topology is ineffective if based on TAL effectors. Our modeling explaines that the reason for this is noncooperative binding of monomeric TAL effectors to DNA. We solved this problem by introducing nonlinearity through the addition of the addition of positive feedback loops consisting of pairs of TAL activators and repressors competing for binding. This arrangement resulted, both theoretically and experimentally in mammalian cells, in functional switch that can be regulated by small molecule inducers. Read more...

Safety

In order to enable safe application of engineered cells in the microencapsulation based therapy we designed three safety mechanisms to degrade the alginate capsules at the end of the therapy, terminate the therapeutic cells by induction of apoptosis and to tag any escaped cells for elimination by the host's natural killer cells. Read more...

Implementation

In consultations with medical experts we tailored our therapeutic devices based on implanted microencapsulated engineered cells to the treatments of hepatitis C and ischaemic heart disease by in situ production of therapeutic protein effectors whose efficiency has already been demonstrated. In agreement with our pharmacokinetic models, this strategy could reduce side effects and improve efficiency of these therapies. Switching between production of effectors with antiviral or anti-inflammatory and tissue regenerative effect could be regulated by administrating a small molecule inducer. Read more...

Modeling

Modeling was used to simulate and improve the properties of the switch and the pharmacokinetic distribution of drugs in the tissue, which is required for an effective therapy and decreased side effects. We introduced improved methods of switch simulations such as a quantitative parameter derivation and algorithmic/mixed simulation that can capture mixed regulator binding to operators. We also included into the wiki a server for online switch simulation. A pharmacokinetic model of the local delivery of therapeutics by microencapsulated cells predicted that this type of drug delivery should have reduced systemic side effects.

Exhaustive modeling of the switch demonstrated that the classic genetic toggle switch arrangement is not stable without cooperativity, but it confirmed functionality and improved robustness of the our switch design with two positive feedback loops. This topology does not require cooperativity since nonlinearity is introduced by the positive feedback loop. Read more...

Society

Different aspects of general medical applications of synthetic biology and our project specifically were discussed with a wide range of stakeholders, including medical professionals, patients, experts on the law and ethics of GMO use and release, scientists, the media and the general public that will all have to participate in a successful introduction of synthetic biology applications to clinical use. We attempted to organize a network of Slovenian high schools to share the excitement of synthetic biology with younger generations and to demonstrate its application in medicine and other fields. Read more...

Perspectives
  • We anticipate that designed DNA-binding element-based transcriptional factor logic will play a very important role in the development of synthetic biology,
  • TAL-based switches allow simultaneous introduction of multiple switches to adopt multiple cellular states with numerous medical and other applications ,
  • The safety mechanisms, including the inducible leak-free termination (prodrug), escape detection and capsule degradation components will allow implementation for different therapeutic purposes,
  • for an effective application stable cell lines containing integrated switches with selected therapeutic effectors and safety mechanisms will have to be established, most likely by the use of human artificial chromosomes,
  • we plan to initiate in vivo experiments first on ischaemia and wound healing.

Read more...

Abstract in plain english

Biological drugs are being used ever more often as advanced drugs for the treatment of numerous diseases, due to their more specific mode of action. In current therapies the biological drugs are usually distributed more or less throughout the whole body, although each function should often be restricted to a specific organ or tissue. This can cause serious side effects, requires larger dosages and consequently raises the price of therapy. Our solution to this problem was to implant cells producing biological drugs inside the very tissue where the drug is required. The drug producing cells are safely sealed inside microcapsules that prevent cells from spreading throughout the body and protect them from destruction by cells of the host immune system. We constructed a device that allows implanted cells to produce different types of drugs while switching between those production states can be controlled from the outside by a physician, depending on the stage of the disease. We designed our device specifically for the therapy of hepatitis C or heart attack. Against hepatitis C the engineered cells produce a protein with antiviral activity, whose biological activity we have tested and confirmed. After the state of the cells is switched, a protein that improves liver regeneration would be produced. For the therapy after a heart attack we designed cells to suppress local inflammation and promote formation of new blood vessels only around the affected tissue. A physician may initiate self-destruction of the therapeutic cells and capsules by an outside stimulus when the therapy is complete or at any other given time. We believe our system to be safe, effective and applicable in the real world for the therapy of different types of diseases.

Achievements in technical details

  • We present the first experimental implementation of a bistable toggle switch in mammalian cells based on noncooperative DNA-binding proteins as well as the first demonstration of a bistable switch based on designed DNA-binding proteins,
  • a bistable toggle switch based on orthogonal TAL-repressors and activators was designed and tested in mammalian cells,
  • mathematical modeling demonstrated improved robustness of a switch based on a positive feedback loop with respect to leaky transcription,
  • we introduced three safety mechanisms into microencapsulated mammalian cells:
    • a tag for escaped cells enabling elimination by natural killer cells,
    • a secretory alginate lyase for degradation of alginate microcapsules,
    • apoptosis of therapeutic cells initiated by the addition of a prodrug.
  • We introduced interferon alpha and hepatocyte growth factor as an effector pair for the therapy of hepatitis C to inactivate the virus followed by the promotion of liver regeneration,
  • we introduced IL-1 receptor antagonist (anakinra) and vascular endothelial growth factor/platelet-derived growth factor BB as effectors for therapy of ischaemia to suppress inflammation followed by the local promotion of angiogenesis,
  • we deposited 89 BioBricks to the Registry and used most of them in functional devices,
  • we improved an existing BioBrick.


Project sponsors
Number of visits: