Team:UC Chile/Cyanolux/Project short

From 2012.igem.org

(Difference between revisions)
 
(14 intermediate revisions not shown)
Line 53: Line 53:
<h2>Strategy</h2>
<h2>Strategy</h2>
-
The limiting step for the bacterial bioluminescent reaction is the substrate (n-decanal) concentration <b>SHOULD ADD CITATION</b>, therefore, to control light emission over time we decided to control it´s abundance in the cells, which in our model is a function of the substrates generation (by Lux C, D, E and G enzymes) and consumption (by the LuxAB luciferase).
+
The limiting step for the bacterial bioluminescent reaction is the substrate (n-decanal) concentration, therefore, to control light emission over time we decided to control it´s abundance in the cells, which in our model is a function of the substrates generation (by Lux C, D, E and G enzymes) and consumption (by the LuxAB luciferase).
<html><center><img src="https://static.igem.org/mediawiki/2012/f/fc/Dospromotorusi.jpg" align="middle" width="850"></center></html>
<html><center><img src="https://static.igem.org/mediawiki/2012/f/fc/Dospromotorusi.jpg" align="middle" width="850"></center></html>
Line 63: Line 63:
Our model works as a “black box” in which the input takes the form of a specific hour of the day (i.e the hour on which you want your metabolite to reach maximal concentration) and the output is a couple of promoters from Synechocystis genome.  
Our model works as a “black box” in which the input takes the form of a specific hour of the day (i.e the hour on which you want your metabolite to reach maximal concentration) and the output is a couple of promoters from Synechocystis genome.  
It assumes that the metabolite's production is controlled by enzymes under the control of promoter 1 and it´s degradation by enzymes under promoter 2.
It assumes that the metabolite's production is controlled by enzymes under the control of promoter 1 and it´s degradation by enzymes under promoter 2.
-
For more details please check [2012.igem.org/Team:UC_Chile/Cyanolux/Modelling here]
+
For more details please check [https://2012.igem.org/Team:UC_Chile/Cyanolux/Modelling here]
<html><center><img src="https://static.igem.org/mediawiki/2012/d/db/Blackbox.2.jpg" align="middle" width="660"></center></html>
<html><center><img src="https://static.igem.org/mediawiki/2012/d/db/Blackbox.2.jpg" align="middle" width="660"></center></html>
Line 72: Line 72:
As there weren´t straighforward tools to start working with in the registry (i.e characterized plasmids backbones, protocols, etc) we started from scratch.
As there weren´t straighforward tools to start working with in the registry (i.e characterized plasmids backbones, protocols, etc) we started from scratch.
-
We designed two recombination plasmids backbones.  One targets a gene essential for our chassis survival in the environment (link:see biosafety) and the other one a neutral site.
+
We designed two recombination plasmids backbones.  One targets a gene essential for our chassis survival in the environment [https://2012.igem.org/Team:UC_Chile/Biosafety#Susceptibility_Construct (see biosafety)] and the other one a neutral site.
 +
 
[[File:UC_Chile-IntKstrategy.jpg | 480px | left]]
[[File:UC_Chile-IntKstrategy.jpg | 480px | left]]
Line 108: Line 109:
-
[https://2012.igem.org/Team:UC_Chile/Cyanolux/Biolamp Full description of the device here]
+
[https://2012.igem.org/Team:UC_Chile/Cyanolux/Biolamp Full description of the biolamp device here]
 +
<div style="float:left">
 +
[https://2012.igem.org/Team:UC_Chile/Cyanolux/Project See more about the whole project]
 +
</div>
 +
<br><br><br>
 +
<html>
 +
<a href="https://2012.igem.org/Team:UC_Chile/Cyanolux/Results_short"><img src="https://static.igem.org/mediawiki/2012/a/ab/UC_Chile-Continue_button.jpg" align="right">
 +
</html>
-
<div style="float:right">
 
-
[https://2012.igem.org/Team:UC_Chile/Cyanolux/Project See more about the project]
 
-
</div>
 
{{UC_Chilefooter}}
{{UC_Chilefooter}}

Latest revision as of 03:23, 27 October 2012

Project: Luxilla - Pontificia Universidad Católica de Chile, iGEM 2012