Team:Cornell/project/drylab/modeling
From 2012.igem.org
(Difference between revisions)
R.Lizarralde (Talk | contribs) (Created page with "{{:Team:Cornell/templates/header}} <!-- paulirish.com/2008/conditional-stylesheets-vs-css-hacks-answer-neither/ --> <!--[if lt IE 7]> <html class="no-js lt-ie9 lt-ie8 lt-ie7" lan...") |
|||
Line 6: | Line 6: | ||
<html class="no-js" lang="en"> | <html class="no-js" lang="en"> | ||
<!--<![endif]--> | <!--<![endif]--> | ||
+ | |||
+ | <script type="text/x-mathjax-config"> | ||
+ | MathJax.Hub.Config({tex2jax: {inlineMath: [['$','$'], ['\\(','\\)']]}}); | ||
+ | </script> | ||
+ | <script type="text/javascript" | ||
+ | src="http://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML"> | ||
+ | </script> | ||
+ | |||
+ | |||
<div class="row"> | <div class="row"> | ||
<div class="two columns"> | <div class="two columns"> | ||
Line 41: | Line 50: | ||
<h3>Motivation</h3> | <h3>Motivation</h3> | ||
+ | When $a \ne 0$, there are two solutions to \(ax^2 + bx + c = 0\) and they are | ||
+ | $$x = {-b \pm \sqrt{b^2-4ac} \over 2a}.$$ | ||
+ | <br><br> | ||
The final part of our project is determining where to place our biosensors. We can’t simply throw our biosensors in the river and expect them to detect toxins. Advective and diffusive processes dictate how toxins are transported in a river and if we don’t take these into account we could potentially place our biosensors in a spot where they would never detect any toxins! Why is this true? Imagine for a moment that there is a river and in this river there is a spot where chemicals are seeping into the river from the soil. As these chemicals seep into the river they are carried downstream by the river through a process called advection. In addition to this, as the chemicals are carried downstream they spread across the width of the river through a process called diffusion. There are several different types of diffusive processes that depend on what scale of diffusion you are looking at. The most pertinent diffusion process for us is turbulent diffusion. If we combine these two processes together the resulting spread of chemicals is shown in Figure 1. As you can see, depending on where we place our biosensor we might never detect any chemicals at all because the chemicals haven’t spread there. If we want to place our biosensors so that they will detect chemicals we need to place them at least a distance L downstream of the chemical source. However, if we place our biosensors too far downstream of the chemical source then the concentration of chemicals will be too dilute for our device to measure. So its best to place our biosensor a distance L away from the chemical source. | The final part of our project is determining where to place our biosensors. We can’t simply throw our biosensors in the river and expect them to detect toxins. Advective and diffusive processes dictate how toxins are transported in a river and if we don’t take these into account we could potentially place our biosensors in a spot where they would never detect any toxins! Why is this true? Imagine for a moment that there is a river and in this river there is a spot where chemicals are seeping into the river from the soil. As these chemicals seep into the river they are carried downstream by the river through a process called advection. In addition to this, as the chemicals are carried downstream they spread across the width of the river through a process called diffusion. There are several different types of diffusive processes that depend on what scale of diffusion you are looking at. The most pertinent diffusion process for us is turbulent diffusion. If we combine these two processes together the resulting spread of chemicals is shown in Figure 1. As you can see, depending on where we place our biosensor we might never detect any chemicals at all because the chemicals haven’t spread there. If we want to place our biosensors so that they will detect chemicals we need to place them at least a distance L downstream of the chemical source. However, if we place our biosensors too far downstream of the chemical source then the concentration of chemicals will be too dilute for our device to measure. So its best to place our biosensor a distance L away from the chemical source. | ||
</div> | </div> |
Revision as of 00:12, 21 October 2012
-
Dry Lab
- Overview
- Specifications
- Design
- Modeling
- Animation
Mathematical Modeling
Motivation
When $a \ne 0$, there are two solutions to \(ax^2 + bx + c = 0\) and they are $$x = {-b \pm \sqrt{b^2-4ac} \over 2a}.$$The final part of our project is determining where to place our biosensors. We can’t simply throw our biosensors in the river and expect them to detect toxins. Advective and diffusive processes dictate how toxins are transported in a river and if we don’t take these into account we could potentially place our biosensors in a spot where they would never detect any toxins! Why is this true? Imagine for a moment that there is a river and in this river there is a spot where chemicals are seeping into the river from the soil. As these chemicals seep into the river they are carried downstream by the river through a process called advection. In addition to this, as the chemicals are carried downstream they spread across the width of the river through a process called diffusion. There are several different types of diffusive processes that depend on what scale of diffusion you are looking at. The most pertinent diffusion process for us is turbulent diffusion. If we combine these two processes together the resulting spread of chemicals is shown in Figure 1. As you can see, depending on where we place our biosensor we might never detect any chemicals at all because the chemicals haven’t spread there. If we want to place our biosensors so that they will detect chemicals we need to place them at least a distance L downstream of the chemical source. However, if we place our biosensors too far downstream of the chemical source then the concentration of chemicals will be too dilute for our device to measure. So its best to place our biosensor a distance L away from the chemical source.