Team:UCSF/Project

From 2012.igem.org

(Difference between revisions)
Line 5: Line 5:
<center><h3red>Overview and Inspiration for Project</h3red></center> <br><p>
<center><h3red>Overview and Inspiration for Project</h3red></center> <br><p>
-
<regulartext>We are taking three different synthetic approaches to study tunable symbiosis. In the first, we use a model pathway (violacein production) to see if cells can work together to more efficiently produce a product. In the second two approaches we look at ways in which cell working together can be tuned to achieve ideal population ratios.</regulartext>
+
<regulartext>We are taking three different synthetic approaches to study tunable symbiosis. In the first, we use a model pathway (violacein production) to see if cells can work together to more efficiently produce a product. In the second two approaches we look at ways in which cells can be tuned to achieve ideal population ratios.</regulartext>
<img align="center" style="margin-bottom:0px; width: 500px; margin-top:20px; padding:2; margin-left:55px;" src="https://dl.dropbox.com/u/24404809/iGEM%202012/igem%202012%20website%20photos/Background/All%20Projects%20Slide.jpg">
<img align="center" style="margin-bottom:0px; width: 500px; margin-top:20px; padding:2; margin-left:55px;" src="https://dl.dropbox.com/u/24404809/iGEM%202012/igem%202012%20website%20photos/Background/All%20Projects%20Slide.jpg">

Revision as of 20:43, 2 October 2012


Overview and Inspiration for Project

We are taking three different synthetic approaches to study tunable symbiosis. In the first, we use a model pathway (violacein production) to see if cells can work together to more efficiently produce a product. In the second two approaches we look at ways in which cells can be tuned to achieve ideal population ratios.

Home Team Official Team Profile Project Parts Submitted to the Registry Modeling Notebook Safety Attributions