Team:UC Chile2/Cyanolux/Project

From 2012.igem.org

(Difference between revisions)
 
(6 intermediate revisions not shown)
Line 50: Line 50:
<p>The lux operon is a group of genes that are responsible for density-dependent bioluminescent behavior
<p>The lux operon is a group of genes that are responsible for density-dependent bioluminescent behavior
-
in various prokariotic organisms such as <i>Vibrio fischeri</i> and <i>Photorabdus luminescens</i>. In <i>V. fischeri</i>, the operon is composed of 8 genes: LuxA and LuxB encode for the monomers of a heterodimeric luciferase; LuxC, LuxD and LuxE code for fatty acid reductases enzymes and LuxR and LuxI are responsible for the regulation of the whole operon.</p>
+
in various prokariotic organisms such as <i>Vibrio fischeri</i> and <i>Photorabdus luminescens</i> [[#12|12]]. In <i>V. fischeri</i>, the operon is composed of 8 genes: LuxA and LuxB encode for the monomers of a heterodimeric luciferase; LuxC, LuxD and LuxE code for fatty acid reductases enzymes and LuxR and LuxI are responsible for the regulation of the whole operon [[#13|13]].</p>
<br />
<br />
-
 
<p>Lastly LuxG is believed to act as a FMNH2 dependent FADH reductase, although luminescence is barely affected
<p>Lastly LuxG is believed to act as a FMNH2 dependent FADH reductase, although luminescence is barely affected
-
in its absence. The n-decanal ( n= 9 to 14) substrate oxidization to n-decanoic acid by the LuxAB heterodimer is coupled with the reduction of FMNH to FMNH2 and the releasing of oxygen and x photons of light at x wavelength.</p>
+
in its absence [[#14|14]]. The n-decanal ( n= 9 to 14) substrate oxidization to n-decanoic acid by the LuxAB heterodimer is coupled with the reduction of FMNH to FMNH2 and the releasing of oxygen and light.</p>
<br />
<br />
-
 
<p>The carboxylic group of the product is then reduced to aldehyde by CDE proteins allowing the reaction to
<p>The carboxylic group of the product is then reduced to aldehyde by CDE proteins allowing the reaction to
-
start over.</p>
+
start over [[#15|15]].</p>
<br />
<br />
-
 
<html>
<html>
<img src="https://static.igem.org/mediawiki/2012/5/56/Alagain_uc_chile.jpg" width="300" align="left" style ="margin-right:15px"></html>
<img src="https://static.igem.org/mediawiki/2012/5/56/Alagain_uc_chile.jpg" width="300" align="left" style ="margin-right:15px"></html>
<p>LuxAB genes have been widely used as reporters dependent on the addition of n-decanal to the culture
<p>LuxAB genes have been widely used as reporters dependent on the addition of n-decanal to the culture
-
media and in 2010, the Cambridge iGEM team engineered LuxABCDEG to an <i>E. coli</i>-optimized biobrick
+
media [[#16|16]] and in 2010, the [https://2010.igem.org/Team:Cambridge Cambridge iGEM team] engineered LuxABCDEG to an <i>E. coli</i>-optimized biobrick
format, uncoupling it from the LuxR and LuxI regulation.</p>
format, uncoupling it from the LuxR and LuxI regulation.</p>
<br />
<br />
Line 71: Line 68:
produced by this pathway is much more visually appealing than other systems from the registry (i.e XFPs),
produced by this pathway is much more visually appealing than other systems from the registry (i.e XFPs),
moreover, the light production doesn´t depend on a single peptide but on a whole pathway involving several genes, which makes it much more tunable, for instance, decoupling in time the substrate recovery from the luciferase reaction itself.</p>
moreover, the light production doesn´t depend on a single peptide but on a whole pathway involving several genes, which makes it much more tunable, for instance, decoupling in time the substrate recovery from the luciferase reaction itself.</p>
-
 
+
<br>
 +
<br>
 +
<br>
<h1>Experimental Strategy</h1>
<h1>Experimental Strategy</h1>
<p>We have devised different strategies to achieve bioluminescence controlled under circadian rhythms. Here we describe the strategies used for building the constructs to reach our goals.</p>
<p>We have devised different strategies to achieve bioluminescence controlled under circadian rhythms. Here we describe the strategies used for building the constructs to reach our goals.</p>
Line 94: Line 93:
When confronted with the different available strategies to express the genes from the Lux operon in Synechocystis, we concluded that the one that best suits our need is by using integration plasmids. The reason for this is that the available plasmids that replicate in Synechocystis are very large (8 Kb) without even considering the genes we need to include in the constructs (that would sum up to a final 16 Kb aproximately). Such a large plasmid would prove very difficult to handle through molecular biology techniques, let alone transform Synechocystis.
When confronted with the different available strategies to express the genes from the Lux operon in Synechocystis, we concluded that the one that best suits our need is by using integration plasmids. The reason for this is that the available plasmids that replicate in Synechocystis are very large (8 Kb) without even considering the genes we need to include in the constructs (that would sum up to a final 16 Kb aproximately). Such a large plasmid would prove very difficult to handle through molecular biology techniques, let alone transform Synechocystis.
<br>
<br>
-
Using integration plasmids also proposes an additional advantage, that is to produce successive integrations which allow accumulation of desirable elements in its genome. Integration in Synechocystis is undergone through double recombination of homologous DNA which also allows interruption of genes if wanted. In our case we have designed our system to produce suceptibility to copper as a biosafety measure to have further control over our recombinant Synechocystis.
+
Using integration plasmids also proposes an additional advantage, that is to produce successive integrations which allow accumulation of different desirable elements in the genome. Integration in Synechocystis is undergone through double recombination of homologous DNA which also allows interruption of genes if wanted. In our case we have designed our system to produce suceptibility to copper as a biosafety measure to have further control over our recombinant Synechocystis.
<br>
<br>
-
We have designed two constructs that have different recombination locations in the Synechocystis chromosome. We have named them according to what Utah iGEM team from 2010 proposed for [https://2010.igem.org/Construction_usu.html#Integration_Plasmid_Construction naming conventions]:
+
We designed two constructs that have different recombination locations in the Synechocystis chromosome. We named them according to what Utah iGEM team from 2010 proposed for [https://2010.igem.org/Construction_usu.html#Integration_Plasmid_Construction naming conventions]:
<h3>pSB1C3_IntK</h3> [http://partsregistry.org/Part:BBa_K743006 BBa_K743006]
<h3>pSB1C3_IntK</h3> [http://partsregistry.org/Part:BBa_K743006 BBa_K743006]
-
<p>This construct is an integrative plasmid which targets neutral recombination sites (slr0370 and sll0337). We selected this locus because it has been extensively used in the literature (REFERENCE) and it shown to have no deleterious effects on Synechocystis viability. We selected Kanamycin resistance as our transformation marker. [PUT LINK TO CONSTRUCT HERE].</p>
+
<p>This construct is an integrative plasmid which targets neutral recombination sites (slr0370 and sll0337). We selected this locus because it has been extensively used in the literature ([[#11| 11]]) and it shown to have no deleterious effects on Synechocystis viability. We selected Kanamycin resistance as our selectable marker. [PUT LINK TO CONSTRUCT HERE].</p>
<br>
<br>
Using this backbone we have decided to put LuxAB under the transaldolase promoter.We have choose the transaldolase promoter to express the luciferase part of the operon, as in the literature the promoter is described as having a peak of expression at 2 hours past dusk, which we believe is just the right timing to "turn on the lamp".
Using this backbone we have decided to put LuxAB under the transaldolase promoter.We have choose the transaldolase promoter to express the luciferase part of the operon, as in the literature the promoter is described as having a peak of expression at 2 hours past dusk, which we believe is just the right timing to "turn on the lamp".
<br>
<br>
-
We've found 2 versions of the bacterial luciferase which we intend to use on this construct. The first one is from Photorhabdus luminiscent K216008 from the 2009 Edinburgh iGEM team and the second one is part from the LuxBrick (K325909 from the 2010 Cambridge iGEM team) and originally comes from Vibrio fisherii but has been "E.coli optimized".
+
We've found 2 versions of the bacterial luciferase which we will use on this construct. The first one is of <i>Photorhabdus luminiscent</i> K216008 from the 2009 Edinburgh iGEM team and the second one is part from the LuxBrick (K325909 from the 2010 Cambridge iGEM team) and originally comes from <i>Vibrio fisherii</i> but has been "E.coli optimized".
<h3>pSB1A3_IntC (Utah 2010 iGEM Team integration plasmid)</h3>
<h3>pSB1A3_IntC (Utah 2010 iGEM Team integration plasmid)</h3>
Line 114: Line 113:
<h3>pSB1C3_IntS</h3>
<h3>pSB1C3_IntS</h3>
<br />
<br />
-
<p>Due to issues mentioned in the results page (PUT LINK HERE) we have decided to design another new plasmid backbone.
+
<p>Due to issues mentioned in the results page (PUT LINK HERE) we designed a new plasmid backbone.
-
This construct besides serving as a integration plasmid, makes Synechocystis susceptible to copper concentrations higher than X uM [[#10|10]]. We have designed this construct to interrupt the CopS gene as a biosafety measure to avoid the possibility of having a leakage of recombinant DNA to the environment. This plasmid has Spectynomycin resistance as the transformation marker. [PUT LINK TO CONSTRUCT HERE]
+
This is an integration plasmid which makes Synechocystis susceptible to copper concentrations higher than 0.75 uM [[#10|10]] by disrupting the CopS gene. We believe that this strategy serves as a biosafety measure to avoid the possibility of having a leakage of recombinant DNA to the environment. The plasmid uses Spectynomycin as a selectable marker. [PUT LINK TO CONSTRUCT HERE]
</p>
</p>
We plan on expressing LuxCDEG under the control of the promoters Pcaa3 and PsigE (mentioned above). These promoters have peak activities 1 hour before dusk. We believe that we might enhance bioluminescence yield initially by setting the substrate production/regeneration part of the operon prior to the expression of the luciferase.(LINK TO MODELLING?)
We plan on expressing LuxCDEG under the control of the promoters Pcaa3 and PsigE (mentioned above). These promoters have peak activities 1 hour before dusk. We believe that we might enhance bioluminescence yield initially by setting the substrate production/regeneration part of the operon prior to the expression of the luciferase.(LINK TO MODELLING?)
Line 121: Line 120:
<h1>References</h1>
<h1>References</h1>
<div id="1">
<div id="1">
-
(1) Hohmann-Marriott MF, Blankenship.(June 2011). Evolution of photosynthesis. Annual Review of Plant Biology Vol. 62: 515-548
+
(1) Hohmann-Marriott MF, Blankenship.(2011). Evolution of photosynthesis. Annual Review of Plant Biology Vol. 62: 515-548
</div>
</div>
<br />
<br />
<div id="2">
<div id="2">
-
(2) Jonathan P. Zehr. (April 2011) Nitrogen fixation by marine cyanobacteria. Trends in microbiology, Vol. 19, 162–17
+
(2) Jonathan P. Zehr. (2011) Nitrogen fixation by marine cyanobacteria. Trends in microbiology, Vol. 19, 162–17
</div>
</div>
<br />
<br />
Line 171: Line 170:
</div><br />
</div><br />
<div id="10">
<div id="10">
-
(10)Giner-Lamia, J., Lopez-Maury, L., Reyes, J. C., & Florencio, F. J. (August 2012). The CopRS two-component system is responsible for resistance to copper in the cyanobacterium Synechocystis sp. PCC 6803. Plant physiology, 159, 1806-1818.
+
(10)Giner-Lamia, J., Lopez-Maury, L., Reyes, J. C., & Florencio, F. J. (2012). The CopRS two-component system is responsible for resistance to copper in the cyanobacterium Synechocystis sp. PCC 6803. Plant physiology, 159, 1806-1818.
</div>
</div>
-
 
+
<br>
 +
<div id="11">
 +
(11)Kucho, K., Aoki, K., Itoh, S., & Ishiura, M., (2005). Improvement of the bioluminescence reporter system for real-time monitoring of circadian rhythms in the cyanobacterium Synechocystis sp. strain PCC 6803. Genes Genet. Syst.  80, p. 19–23
 +
</div>
 +
<div id="12">
 +
(12)Meighen, E. a. (1991). Molecular biology of bacterial bioluminescence. Microbiological reviews, 55(1), 123-42.
 +
</div>
 +
<div id="13">
 +
(13)Dunlap, P. V. (1999). Quorum regulation of luminescence in Vibrio fischeri. Journal of molecular microbiology and biotechnology, 1(1), 5-12.
 +
</div>
 +
<div id="14">
 +
(14)Luciferase, R. (2001). Differential Transfers of Reduced Flavin Cofactor and Product by Bacterial Flavin. Society, 1749-1754.
 +
</div>
 +
<div id="15">
 +
(15) Kelly, C. J., Hsiung, C.-J., & Lajoie, C. a. (2003). Kinetic analysis of bacterial bioluminescence. Biotechnology and bioengineering, 81(3), 370-8. doi:10.1002/bit.10475
 +
</div>
 +
<div id="16">
 +
(16)Tehrani, G. A., Mirzaahmadi, S., Bandehpour, M., & Laloei, F. (2011). Molecular cloning and expression of the luciferase coding genes of Vibrio fischeri. Journal of Biotechnology, 10(20), 4018-4023. doi:10.5897/AJB10.2363
{{UC_Chilefooter}}
{{UC_Chilefooter}}

Latest revision as of 22:52, 25 September 2012

Project: Luxilla - Pontificia Universidad Católica de Chile, iGEM 2012