<p>The easiest way to design primers to obtain amplicons with the required overlaps (40bp final overlaps) is to make an <i>in sillico</i> design of the final construct</p>
<p>The easiest way to design primers to obtain amplicons with the required overlaps (40bp final overlaps) is to make an <i>in sillico</i> design of the final construct</p>
<ul>
<ul>
Line 96:
Line 96:
<li>Apply same principle in all joints</li>
<li>Apply same principle in all joints</li>
</ul>
</ul>
-
<h2>Obtaining parts</h2>
+
<h3>Obtaining parts</h3>
<ul>
<ul>
<li>PCR parts using Phusion Polymerase datasheet indications. It is important to use a low ammount of template plasmid (10pg) as to reduce possibility of carry-over during band purification</li>
<li>PCR parts using Phusion Polymerase datasheet indications. It is important to use a low ammount of template plasmid (10pg) as to reduce possibility of carry-over during band purification</li>
Line 103:
Line 103:
<li>Quantify purified DNA</li>
<li>Quantify purified DNA</li>
</ul>
</ul>
-
<h2>Assembly reaction</h2>
+
<h3>Assembly reaction</h3>
<p>The assembly reaction is composed of 9uL of 1.33X Gibson assembly master mix + 3uL of purified parts DNA</p>
<p>The assembly reaction is composed of 9uL of 1.33X Gibson assembly master mix + 3uL of purified parts DNA</p>
<ul>
<ul>
Line 113:
Line 113:
<li>Transform competent cells with 8uL of assembled DNA (that leaves 4uL to check in an agarose gel if the reaction fails)</li>
<li>Transform competent cells with 8uL of assembled DNA (that leaves 4uL to check in an agarose gel if the reaction fails)</li>
</ul>
</ul>
-
<h2Checking assembly</h2>
+
<h3>Checking assembly</h3>
<ul>
<ul>
<li>Check transformant colonies by colony PCR using primers for whole insert</li>
<li>Check transformant colonies by colony PCR using primers for whole insert</li>
Revision as of 04:32, 13 September 2012
Project: Luxilla - Pontificia Universidad Católica de Chile, iGEM 2012
2uL Epicentre T5 Exonuclease 1U/uL (cat N° T5E4111K) from Illumina
It is important to dilute the T5 Exonuclease stock from 10U/uL to 1U/ul to measure the volume correctly
50uL Taq DNA Ligase 2000 U/uL (cat N° M208S) from NEB
216.75uL of nuclease free H20
Alicuot 9uL in 0.2mL PCR tubes. This will yield about 42 reactions
DNA assembly
Gibson Assembly
Design primers
The easiest way to design primers to obtain amplicons with the required overlaps (40bp final overlaps) is to make an in sillico design of the final construct
Design forward primer of right amplicon of joint in 5'->3' direction
Calculate length of annealing part of primer as to reach a Tm of approximately 63°C
Add 20 bp of overlap
Design reverse primer of left amplicon of joint in 5'->3' direction
To do this, select full joint and "reverse complement" it (be sure to be able to discriminate between right and left parts of joint)
Calculate length of annealing part of primer as to reach a Tm of approximately 63°C
Add 20 bp of overlap
Apply same principle in all joints
Obtaining parts
PCR parts using Phusion Polymerase datasheet indications. It is important to use a low ammount of template plasmid (10pg) as to reduce possibility of carry-over during band purification
Run agarose gel electrophoresis on a adecuate gel (50bp to 200bp parts should be run on a 3% w/v agarose gel, larger parts should be run on a 1% w/v to 1.5% w/v agarose gel) until clear distinction of bands is achieved. It is recommended that gels should be exposed as little as possible to UV transilluminators as UV light damages DNA.
Cut band and proceed with band purification. Elute in smallest volume as possible according to your kit specification
Quantify purified DNA
Assembly reaction
The assembly reaction is composed of 9uL of 1.33X Gibson assembly master mix + 3uL of purified parts DNA
The calculation of the ratio at which your DNA parts are should be in correspondence to the level of competence of your cells. We have found that with our cells (5*10^⁸ colonies/ug of pUC19 DNA) the following ratios work well
Calculate the amount of pmoles of each purified DNA part using the following equation: pmoles of DNA = weigth in ng * 1000 (conversion factor from nano to pico) / (650 Daltons * base pair length of part)
We have seen that using 0.01 picomoles of template (part with the selection resistance) and the rest of parts at 0.03 picomoles and above, yield a high ratio of true positive transformants and a decent number of colonies to check
Thoroughly mix the 3uL of purified parts DNA with the 9uL of 1.33X Gibson assembly master mix in ice
Directly incubate the reaction at 50°C for 1 hour
Transform competent cells with 8uL of assembled DNA (that leaves 4uL to check in an agarose gel if the reaction fails)
Checking assembly
Check transformant colonies by colony PCR using primers for whole insert
Grow positive colonies in media with corresponding antibiotic
Miniprep colonies and digest plasmid with EcoRI & PstI restriction enzymes
If checking protocols validate until know, proceed by sequencing plasmid