Team:UT Dallas

From 2012.igem.org

(Difference between revisions)
Line 83: Line 83:
<li style="background:url('https://static.igem.org/mediawiki/2012/4/44/Infographics.png') no-repeat scroll 0 0 #EEEEEE;border-right-width:0">
<li style="background:url('https://static.igem.org/mediawiki/2012/4/44/Infographics.png') no-repeat scroll 0 0 #EEEEEE;border-right-width:0">
-
<div class="hpanel">
+
<div class="hpanel" style='padding-top:10px;padding-right:10px;'>
infographics  
infographics  
</div>
</div>
Line 89: Line 89:
<li style="background:url('https://static.igem.org/mediawiki/2012/6/60/N_Populations.png') no-repeat scroll 0 0 #EEEEEE;border-right-width:0">
<li style="background:url('https://static.igem.org/mediawiki/2012/6/60/N_Populations.png') no-repeat scroll 0 0 #EEEEEE;border-right-width:0">
-
<div class="hpanel" style=''>
+
<div class="hpanel" style='padding-top:10px;padding-right:10px;'>
new  
new  
</div>
</div>
Line 95: Line 95:
<li style="background:url('https://static.igem.org/mediawiki/2012/6/61/3_populations.png') no-repeat scroll 0 0 #EEEEEE;border-right-width:0">
<li style="background:url('https://static.igem.org/mediawiki/2012/6/61/3_populations.png') no-repeat scroll 0 0 #EEEEEE;border-right-width:0">
-
<div class="hpanel" style=''>
+
<div class="hpanel" style='padding-top:10px;padding-right:10px;'>
-
AND gate
+
<img src="https://static.igem.org/mediawiki/2012/b/b7/3-populations.png" style="margin-left:20px">
</div>
</div>
</li>
</li>

Revision as of 21:54, 3 October 2012

  • infographics
  • new

Distributed Cellular Processing Units: a synergistic approach to biological computing

The goal of the 2012 University of Texas at Dallas IGEM team is to redefine biological information processing using quorum signaling-based biological circuitry in bacteria. Quorum signaling allows bacteria to communicate with each other through the use of chemical signals. Bacteria use this form of signaling in nature to coordinate their behavior. Using three quorum signaling molecules we create unique connections between different populations of engineered bacteria and perform coordinated computing functions. We design and characterize standard and novel modules such as toggle switches, oscillators, signal propagators, and logic gates. As compared to engineering molecular circuitry in single populations, we aim to show that the synergistic approach to information processing leads to improved, scalable, and tunable operation.