Team:EPF-Lausanne/Notebook/16 September 2012

From 2012.igem.org

Revision as of 23:42, 17 September 2012 by Aiourano (Talk | contribs)


Contents

LovTAP readout Biobrick PCR

Protocol: PCR


PCR is a reaction that makes it possible (and relatively easy) to amplify a certain region of DNA. The first step is the selection of that region (and the design of the relevant primers). Primer design can be done by hand, or by using our Primer Design Helper. Once done, order the primers (in our case, we ordered from them [http://www.idtdna.com/ IDT]).

When you've received the primers, prepare them and make sure you've got your PCR kit (we used the "Phusion® High-Fidelity DNA Polymerase"). Start preparing your master mix, the composition for one tube is:

1X Mastermix 20μl reaction, add in this order

Reagent Volume [μl]
Water Complete to total volume of 20μl
HF-Buffer (5x) 4
DMSO (optional) 0.6
dNTPs 0.4
Forward primer (50μM) 0.2
Reverse primer (50μM) 0.2
Template (10ng/μl) 0.5
Phusion HF polymerase 0.2

Prepare one or two extra tubes-worth of reagent (you'll use some liquid on the walls of your tips).

Once you've finished, you should run the resulting products on a gel to check if everything went as planned.

Tips

  • Thaw the HF-Buffer, DMSO and dNTPs before making the mastermix.
  • Avoid taking the Phusion-HF polymerase out of the freezer (only take it out briefly when you need to add it).
  • If the reactions have different primers and/or template, add the polymerase right after the dNTPs, split the mastermix and add the rest.
  • Don't forget positive and negative controls
  • Primers should have similar Tms (less than 5°C).
  • Primer Tm calculation is a less exact science than it should be (just test several tools and compare their results). If you're not sure what the correct Tm is, consider using a gradient PCR.
  • Avoid primers with strong secondary structures.
  • PCR can introduce mutations. Don't forget to sequence your final product (this could be your final plasmid): you really don't want to lose a few weeks because of a "corrupt" plasmid.


A gradient PCR was run with the appropriate Biobricking primers, with a GFP positive control. The PCR products were run on a gel.

The expected product size was 1273 bp, which is what we observe for all lanes of the gel. This version of the BioBricking primers finally seems to work, at all temperatures.


pSB1C3-NFAT Ligation

Protocol: Ligation


Ligation is a method of combining several DNA fragments into a single plasmid. This is often the step following a PCR (and a PCR cleanup) or a gel extraction. You can also do a "dirty" ligation, where you follow a certain number of digestions directly by a ligation.

  1. Download the following spreadsheet : File:Team-EPF-Lausanne Ligation.xls
  2. Fill in the pink areas with the vector and fragment concentration, their size and the ratio.
  3. Add all the suggested ingredients order in a microcentrifuge tube, in the order they appear.
  4. Ligate for 2 hours at 14ºC.
  5. Immediately transform competent bacteria with the ligation product.

Note: This protocol hasn't been optimized for blunt-end ligation (though it might still work).


The NFAT BioBricked PCR product was digested with EcoRI and PstI, and so was the linearized backbone received from the iGEM Headquarters. We ligated them together, following our standard protocol.

pSB1C3-NFAT Transformation

Protocol: E.Coli Transformation


  1. Thaw the competent E.coli (DH5alpha) cells on ice (not in hands!)
  2. As soon as it is thawed, add 50µl of the cells to the DNA (~50-100 ng of pure plasmid, or some 2 µl usually)
  3. Let it rest on ice for 20-30 min. Meanwhile, put agar plate (with correct antibiotic) at 37°C for prewarming.
  4. Put the tube with DNA+E.coli at 42°C for 45 sec - 1 min (heat shock)
  5. Add 400 µl of LB broth and place at 37°C for 20-30 min (shaking)
  6. Spread the cells on the prewarmed plate (and let it dry)
  7. Incubate the plate upside-down at 37°C for ~14-15 hours (leaving it more than 16h decreases the plasmid quality)



A transformation of the ligated pSB1C3-NFAT product was performed, and the plates were left overnight, as usual.