Team:Stanford-Brown

From 2012.igem.org

(Difference between revisions)
 
(80 intermediate revisions not shown)
Line 31: Line 31:
         <td>
         <td>
           <div style="width: 580px; margin-top:0px;">
           <div style="width: 580px; margin-top:0px;">
 +
            <span id="abs-title" style="margin-top:-30px;"><a href="/Team:Stanford-Brown/AboutUs/Recruiting">COME JOIN US IN 2013! CLICK HERE!</a></span>
             <span id="abs-title">ABSTRACT</span>
             <span id="abs-title">ABSTRACT</span>
             <span style="float: left;">
             <span style="float: left;">
Line 43: Line 44:
             <div style="margin-top:15px; text-align:center; font-weight: 600; font-size: 18px;">ACCOMPLISHMENTS</div>
             <div style="margin-top:15px; text-align:center; font-weight: 600; font-size: 18px;">ACCOMPLISHMENTS</div>
               <ul>
               <ul>
-
                 <li> Created this wiki </li>
+
                 <li> <a href="#"> Introduced Synthetic Biology as a tool for Astrobiology </a></li>
-
                 <li> Isolated and bricked over 20 genes </li>
+
                 <li> <a href="#">Top 16 at iGEM World Competition </a></li>
-
                 <li> Used a wide array of assays </li>
+
                <li> <a href="#">Best Natural BioBrick at Americas West Regionals </a></li>
-
                 <li> Presented at Maker Faire twice </li>
+
                <li> <a href="/Team:Stanford-Brown/HellCell/Introduction">Isolated parts that improve resistance to extreme conditions in <i>Escherichia coli</i></a></li>
-
                 <li> Wrote gene patent and bioethics guides. </li>
+
                 <li> <a href="/Team:Stanford-Brown/VenusLife/Biosensing">Developed two cell-cycle dependent promoters for use as remote biosensors </a></li>
 +
                 <li> <a href="/Team:Stanford-Brown/Biomining/Harvesting">Improved part BBa_K133038 by standardizing ligation into flagella and engineered the <i>E. coli</i> flagellum to extract metals <i>in situ</i></a></li>
 +
                 <li> <a href="/Team:Stanford-Brown/VenusLife/Modeling">Modeled bacterial growth in the Venusian atmosphere </a></li>
 +
                <li> <a href="/Team:Stanford-Brown/HumanPractices/Introduction">Wrote Guides to Bioethics and Gene Patent Law </a></li>
 +
                <li> <a href="http://www.wired.com/wiredscience/2012/08/engineering-bacteria-for-mars/">Featured in Wired Magazine and Cal Academy of Sciences </a></li>
 +
                <li> <a href="http://www.facebook.com/IgemMemes">Created and maintained iGEM memes </a></li>
               </ul>
               </ul>
             </div>
             </div>
Line 60: Line 66:
       <tr>
       <tr>
         <td>
         <td>
-
           <div class="feature"><img src="https://static.igem.org/mediawiki/2012/5/5a/HellCell.png" width="281"/>
+
           <div class="feature"><a href="https://2012.igem.org/Team:Stanford-Brown/HellCell/Introduction"><img src="https://static.igem.org/mediawiki/2012/5/5a/HellCell.png" width="281"/></a>
-
             <p class="brief">Surviving in the harsh conditions of space is not easy for an organism.  Extreme temperatures, desiccation, and pressures are only some of the problems an intrepid bacterium might face on its journey.  We hope to equip our organisms with the ability to live and thrive in space, and maybe even Venus!
+
             <p class="brief">Surviving in the harsh conditions of space is not easy for an organism.  Extreme temperatures, desiccation, and pressures are only some of the problems an intrepid bacterium might face on its journey.  We successfully strengthened our organisms with some of these abilities––desiccation and extreme basicity--in preparation for a journey into space!
             </p>   
             </p>   
           </div>
           </div>
         </td>   
         </td>   
         <td>
         <td>
-
           <div class="feature"><img src="https://static.igem.org/mediawiki/2012/d/dc/Venus.png" width="281"/>
+
           <div class="feature"><a href="https://2012.igem.org/Team:Stanford-Brown/VenusLife/Introduction"><img src="https://static.igem.org/mediawiki/2012/d/dc/Venus.png" width="281"/></a>
-
             <p class="brief">The surface of Venus is harsh and unforgiving.  However, research suggests that there may be layers of its atmosphere that are more temperate.  We aim to see whether or not it is possible for bacteria to survive and replicate in an aerosolized environment, and then put our Hell Cell to the test!
+
             <p class="brief">The surface of Venus is a harsh and unforgiving environment.  However, research suggests that there may be layers of its atmosphere that are more temperate.  To prepare for tests to see if organisms can survive in the clouds of Venus, we successfully developed cell-cycle dependent reporters to tell us when our cells are happy and dividing!
             </p>   
             </p>   
           </div>
           </div>
         </td>
         </td>
         <td>
         <td>
-
           <div class="feature"><img src="https://static.igem.org/mediawiki/2012/6/60/Biomining.png" width="281" />
+
           <div class="feature"><a href="https://2012.igem.org/Team:Stanford-Brown/Biomining/Introduction"><img src="https://static.igem.org/mediawiki/2012/6/60/Biomining.png" width="281" /></a>
-
             <p class="brief">If we are to colonize space, we are going to need rare metals for materials. But bringing the heavy duty equipment for traditional mining is not very viable at all! Bacteria and other biological organisms can be used to extract rare metals from sediment. Bacteria could mine asteroids and do all the work for us!
+
             <p class="brief">If we are to colonize space, we are going to need rare metals for materials. But bringing heavy duty equipment for traditional mining is not very viable at all! Bacteria and other biological organisms can be used to extract rare metals from sediment. Bacteria could mine asteroids and do all the work for us, and we equipped their flagella with the tools to do so!
             </p>
             </p>
           </div>
           </div>

Latest revision as of 03:42, 8 January 2013

COME JOIN US IN 2013! CLICK HERE! ABSTRACT

Astrobiology revolves around three central questions: "Where do we come from?", "Where are we going?", and "Are we alone?" The Stanford-Brown iGEM team explored synthetic biology's untapped potential to address these questions. To approach the second question, the Hell Cell subgroup developed BioBricks that allow a cell to survive harsh extraterrestrial conditions. Such a toolset could create a space-ready synthetic organism to perform useful functions off-world. For example, the Biomining branch attempted to engineer bacteria to recycle used electronics by degenerating silica and extracting metal ions in situ. The Venus Life subproject grappled with the third key astrobiological question by exploring Carl Sagan's theory that life could exist in Venusian clouds. To this end, Venus Life designed a cell-cycle reporter to test for growth in aerosol within an adapted Millikan apparatus. Through this triad of projects, Stanford-Brown iGEM aims to illuminate synthetic biology's value as a tool for astrobiology.

Surviving in the harsh conditions of space is not easy for an organism. Extreme temperatures, desiccation, and pressures are only some of the problems an intrepid bacterium might face on its journey. We successfully strengthened our organisms with some of these abilities––desiccation and extreme basicity--in preparation for a journey into space!

The surface of Venus is a harsh and unforgiving environment. However, research suggests that there may be layers of its atmosphere that are more temperate. To prepare for tests to see if organisms can survive in the clouds of Venus, we successfully developed cell-cycle dependent reporters to tell us when our cells are happy and dividing!

If we are to colonize space, we are going to need rare metals for materials. But bringing heavy duty equipment for traditional mining is not very viable at all! Bacteria and other biological organisms can be used to extract rare metals from sediment. Bacteria could mine asteroids and do all the work for us, and we equipped their flagella with the tools to do so!