Team:Peking/Modeling/Phototaxis/PDE

From 2012.igem.org

Revision as of 19:58, 26 September 2012 by Shrine (Talk | contribs)

Intention

Based on the previous model basis, we are to view Phototaxis on the macroscopic level. We expected to make light as a pointer. If we give a bright area, cells should gather together to this area. Based on Mean-field approximation, we contructed a simulation platform for dynamic system on a plane and tracked the process of population variance. In order to reduce the error caused by quadratic mesh, we prefer incorporating the more isotropic hexagonal mesh in the simulation enviroment.

Result from Mean-field Model

Recent paper derived the K-S chemotaxis equation based on mean-field model[1]

and showed the linkage between the cells' population level motility factor μ0 and [CheYP] with[1],[2]

where

  • v0 : average running velocity
  • zθ : a const rate
  • τ : average time in a running

Since f0 only relates to the chemical signal in chemotaxis system, we consider it constant in our phototaxis system. Besides, we would like to add the growth function to the equation to approach the real situation. Due to the light to the system, the μ0 is not constant any more (thus we denote μ0 as μ). After some derivation, the previous equation should become

where

  • ρ : population density
  • μ : population diffusion factor (cell motility)
  • g : growth rate

Theoretic analysis shows that the equilibrium state of the density distribution should be

with closed boundary conditions. The constant is independent from position. This result means that the population density in light areas is higher than in dark ones.

Simulation on Hexagonal Mesh

This PDE (Partial Differential Equation) system is usually simulated in FDM (Finite Difference Method). We constructed a FDM simulation environment in C++ with hexagonal mesh and simulated this cellular movement regulated by light intensity (so-called Phototaxis) in this environment. On the boundary of the lighting area, the simulation shows that there should be high population density.

Figure 1. Simulation in Hexagonal-coordinate environment. The circle area is illuminated with light. The cell density increases on the border of the circle area.

We also light a pattern of Chinese Huabiao, and an outline of Huabiao appeared.

Figure 2. Simulation of cellular movement regulated by light. Here we use the pattern of Chinese Huabiao to regulate the cellular movement, and we see the cell's population begins to show a rough shape of the light pattern we give.

Actually, this is a temporary state phenomenum of this system. Simulation indicates that it will cost a tremendously long time to reach the final state, while temporary states are usually seen like the figure above.

Conclusion

This simulation shows that our system will link the mobility of cells with the light signal. The result shows that there will be an outline with high density population on the boundary of lighting area as a temporary state. With this special property, this system has potential to be an edge-detection system to light in the future.

Reference

  • 1.Si, G., Wu, T., Ouyang, Q., Tu, Y.(2012) Pathway-based Mean-field Model for Escherichia coli Chemotaxis. Phys. Rev. Lett., 109: 048101
  • 2.Jiang, L., Ouyang, Q., Tu, Y.(2010) Quantitative Modeling of Escherichia coli Chemotactic Motion in Environments Varying in Space and Time. PLoS Comput. Biol., 6: e1000735
  • Totop Totop