Team:Peking/Modeling/Ring/Simulation

From 2012.igem.org

(Difference between revisions)
Line 10: Line 10:
  <h3 id="title1">ODE Model</h3>
  <h3 id="title1">ODE Model</h3>
  <p>
  <p>
-
According to the previous circuit and ODE model, we listed all the differential equations <!--(<a href="/Team:Peking/Modeling/Appendix/ODE">detail here</a>)--> and simulated this system with MATLAB with equations listed as below:
+
According to the previous circuit and ODE model, we listed all the differential equations <!--(<a href="/Team:Peking/Modeling/Appendix/ODE">detail here</a>)--> and simulated this system in MATLAB with equations listed as below:
  </p>
  </p>
  <div class="floatC">
  <div class="floatC">
Line 20: Line 20:
  </div>
  </div>
  <p>
  <p>
-
And parameters as
+
We applied the inverse square law to describe the light intensity distribution on the plate according to different radius, with a central intensity <i>I<sub>0</sub></i> in a region of <i>r=1mm</i>. Here, parameters are:
  </p>
  </p>
  <div class="floatC">
  <div class="floatC">
Line 46: Line 46:
   </tr><tr>
   </tr><tr>
     <td>r<sub>L</sub></td><td>2.31x10<sup>-2</sup></td><td>min<sup>-1</sup></td><td>LacI and LacIM1 dissociation rate constant</td><td><a href="#ref1" title="Subhayu Basu et al.(2005), A synthetic multicellular system for programmed pattern formation. <i>Nature</i>, vol.434: 1130: 1134">[1]</a></td>
     <td>r<sub>L</sub></td><td>2.31x10<sup>-2</sup></td><td>min<sup>-1</sup></td><td>LacI and LacIM1 dissociation rate constant</td><td><a href="#ref1" title="Subhayu Basu et al.(2005), A synthetic multicellular system for programmed pattern formation. <i>Nature</i>, vol.434: 1130: 1134">[1]</a></td>
-
  </tr><tr>
 
-
    <td>r<sub>R</sub></td><td>2.31x10<sup>-2</sup></td><td>min<sup>-1</sup></td><td><i>Luminesensor</i> dissociation rate constant</td><td></td>
 
   </tr><tr>
   </tr><tr>
     <td>I<sub>0</sub></td><td>1000</td><td>AU</td><td>Maximum light intensity in the middle of the plate </td><td></td>
     <td>I<sub>0</sub></td><td>1000</td><td>AU</td><td>Maximum light intensity in the middle of the plate </td><td></td>
Line 58: Line 56:
  </div>
  </div>
  <p>
  <p>
-
The simulation result is shown below:
+
The simulation results in static state are shown below:
  </p>
  </p>
  <div class="floatC">
  <div class="floatC">

Revision as of 20:59, 24 October 2012

ODE Model

According to the previous circuit and ODE model, we listed all the differential equations and simulated this system in MATLAB with equations listed as below:

Formulae


Formulae

We applied the inverse square law to describe the light intensity distribution on the plate according to different radius, with a central intensity I0 in a region of r=1mm. Here, parameters are:

ParameterValueUnitDescriptionSource
aG210-6M/minGFP production rate constant[1]
aC210-6M/minCI production rate constant[1]
aL1110-6M/minLacI production rate constant[1]
aL2110-6M/minLacIM1 production rate constant[1]
bC8.x10-310-6MBinding strength of CI on LacI operator[1]
bL8.x10-110-6MBinding strength of LacI or LacIM1 on GFP operator[1]
bR1.x10-210-6MBinding strength of Luminesensor on corresponding operator
rG6.92x10-2min-1GFP dissociation rate constant[1]
rC6.92x10-2min-1CI dissociation rate constant[1]
rL2.31x10-2min-1LacI and LacIM1 dissociation rate constant[1]
I01000AUMaximum light intensity in the middle of the plate
k50010-6MLuminesensor activation rate under light
K10000AUlight sensitivity of Luminesensor activation

The simulation results in static state are shown below:

Simulation Result

Figure 1. ODE Simulation in a plate of the ring-like pattern formation.

Simulation Result

Figure 2. ODE Simulation for the radial expression amplitude of the ring-like pattern formation.

From the Figure 1 & 2 above, we discover that, with wildtype parameters, ring-like pattern is formed based on sender-receiver communication through bio-luminescence.

Parameter Analysis

After modeling the ring-like pattern formation with wildtype parameters, we attempted to optimize it in a rational way. We have tuned the parameters both up and down, one by one, and finally discovered five parameters which predominantly influence the expression intensity, ring radius, and band width of pattern formation.

Function Parameter Description Remark
Reduce responsing time k1Vivid lighting decay rate constantMainly on process from Light to Dark
k3rate constant of monomer LexA releasing from specific binding site
Enhance contrast K2Vivid association equilibrium constantMore dimerization provides more binding opportunity
K5dimered LexA binding equilibrium constantMore binding affinity

Reference

  • 1. Subhayu Basu et al.(2005), A synthetic multicellular system for programmed pattern formation. Nature, vol.434: 1130: 1134
  • Totop Totop