Team:Peking/Modeling/Ring/Simulation

From 2012.igem.org

(Difference between revisions)
Line 27: Line 27:
     <td>Parameter</td><td>Value</td><td>Unit</td><td>Description</td><td>Source</td>
     <td>Parameter</td><td>Value</td><td>Unit</td><td>Description</td><td>Source</td>
   </tr><tr>
   </tr><tr>
-
     <td>a<sub>G</sub></td><td>3.x10<sup>-4</sup></td><td>s<sup>-1</sup></td><td>vivid decay rate constant</td><td></td>
+
     <td>a<sub>G</sub></td><td>2</td><td>10<sup>-6</sup>M/min</td><td>vivid decay rate constant</td><td></td>
   </tr><tr>
   </tr><tr>
-
     <td>a<sub>C</sub></td><td>5.6x10<sup>-5</sup></td><td>s<sup>-1</sup></td><td>vivid dissociation rate constant</td><td><a href="#ref3" title="Zoltowski, B.D., Vaccaro, B., and Crane, B.R. (2009). Mechanism-based tuning of a LOV domain photoreceptor. Nat. Chem. Biol. 5: 827: 834">[3]</a></td>
+
     <td>a<sub>C</sub></td><td>2</td><td>10<sup>-6</sup>M/min</td><td>vivid dissociation rate constant</td><td><a href="#ref3" title="Zoltowski, B.D., Vaccaro, B., and Crane, B.R. (2009). Mechanism-based tuning of a LOV domain photoreceptor. Nat. Chem. Biol. 5: 827: 834">[3]</a></td>
   </tr><tr>
   </tr><tr>
-
     <td>a<sub>L1</sub></td><td>8.x10<sup>-4</sup></td><td>s<sup>-1</sup></td><td>monomer LexA releasing rate constant from specific binding site</td><td></td>
+
     <td>a<sub>L1</sub></td><td>1</td><td>10<sup>-6</sup>M/min</td><td>monomer LexA releasing rate constant from specific binding site</td><td></td>
   </tr><tr>
   </tr><tr>
-
     <td>a<sub>L2</sub></td><td>1.x10<sup>-3</sup></td><td>s<sup>-1</sup></td><td>binded monomer LexA dissociation rate constant</td><td></td>
+
     <td>a<sub>L2</sub></td><td>1</td><td>10<sup>-6</sup>M/min</td><td>binded monomer LexA dissociation rate constant</td><td></td>
   </tr><tr>
   </tr><tr>
-
     <td>b<sub>C</sub></td><td>1.x10<sup>-4</sup></td><td>s<sup>-1</sup></td><td>dimered LexA releasing rate constant from specific binding site</td><td></td>
+
     <td>b<sub>C</sub></td><td>8.x10<sup>-3</sup></td><td>10<sup>-6</sup>M</td><td>dimered LexA releasing rate constant from specific binding site</td><td></td>
   </tr><tr>
   </tr><tr>
-
     <td>b<sub>L</sub>(Dark)</td><td>0</td><td>1</td><td>equilibrium excitation constant on dark</td><td></td>
+
     <td>b<sub>L</sub></td><td>8.x10<sup>-1</sup></td><td>10<sup>-6</sup>M</td><td>equilibrium excitation constant on dark</td><td></td>
   </tr><tr>
   </tr><tr>
-
     <td>b<sub>R</sub>(Light)</td><td>1.x10<sup>+3</sup></td><td>1</td><td>equilibrium excitation constant on light</td><td></td>
+
     <td>b<sub>R</sub></td><td>1.x10<sup>-2</sup></td><td>10<sup>-6</sup>M</td><td>equilibrium excitation constant on light</td><td></td>
   </tr><tr>
   </tr><tr>
-
     <td>r<sub>G</sub></td><td>7.7x10<sup>-5</sup></td><td>(n mol/L)<sup>-1</sup></td><td>vivid association equilibrium constant</td><td><a href="#ref1" title="Zoltowski, B.D., Crane, B.R.(2008). Light Activation of the LOV Protein Vivid Generates a Rapidly Exchanging Dimer.Biochemistry, 47: 7012: 7019 ">[1]</a></td>
+
     <td>r<sub>G</sub></td><td>6.92x10<sup>-2</sup></td><td>min<sup>-1</sup></td><td>vivid association equilibrium constant</td><td><a href="#ref1" title="Zoltowski, B.D., Crane, B.R.(2008). Light Activation of the LOV Protein Vivid Generates a Rapidly Exchanging Dimer.Biochemistry, 47: 7012: 7019 ">[1]</a></td>
   </tr><tr>
   </tr><tr>
-
     <td>r<sub>C</sub></td><td>1.x10<sup>-3</sup></td><td>(n mol/L)<sup>-1</sup></td><td>monomer LexA binding equilibrium constant with specific binding site</td><td><a href="#ref2" title="2. Mohana-Borges, R., Pacheco, A.B., Sousa, F.J., Foguel, D., Almeida, D.F., and Silva, J.L. (2000). LexA repressor forms stable dimers in solution. The role of specific DNA in tightening protein-protein interactions. J. Biol. Chem., 275: 4708: 4712">[2]</a></td>
+
     <td>r<sub>C</sub></td><td>6.92x10<sup>-2</sup></td><td>min<sup>-1</sup></td><td>monomer LexA binding equilibrium constant with specific binding site</td><td><a href="#ref2" title="2. Mohana-Borges, R., Pacheco, A.B., Sousa, F.J., Foguel, D., Almeida, D.F., and Silva, J.L. (2000). LexA repressor forms stable dimers in solution. The role of specific DNA in tightening protein-protein interactions. J. Biol. Chem., 275: 4708: 4712">[2]</a></td>
   </tr><tr>
   </tr><tr>
-
     <td>r<sub>L</sub></td><td>K<sub>2</sub>xK<sub>5</sub>/K<sub>3</sub></td><td>(n mol/L)<sup>-1</sup></td><td>binded monomer LexA association equilibrium constant</td><td>Thermal Principle</td>
+
     <td>r<sub>L</sub></td><td>2.31x10<sup>-2</sup></td><td>min<sup>-1</sup></td><td>binded monomer LexA association equilibrium constant</td><td>Thermal Principle</td>
   </tr><tr>
   </tr><tr>
-
     <td>r<sub>R</sub></td><td>1.</td><td>(n mol/L)<sup>-1</sup></td><td>dimered LexA binding equilibrium constant</td><td><a href="#ref2" title="Mohana-Borges, R., Pacheco, A.B., Sousa, F.J., Foguel, D., Almeida, D.F., and Silva, J.L. (2000). LexA repressor forms stable dimers in solution. The role of specific DNA in tightening protein-protein interactions. J. Biol. Chem., 275: 4708: 4712">[2]</a></td>
+
     <td>r<sub>R</sub></td><td>2.31x10<sup>-2</sup></td><td>min<sup>-1</sup></td><td>dimered LexA binding equilibrium constant</td><td><a href="#ref2" title="Mohana-Borges, R., Pacheco, A.B., Sousa, F.J., Foguel, D., Almeida, D.F., and Silva, J.L. (2000). LexA repressor forms stable dimers in solution. The role of specific DNA in tightening protein-protein interactions. J. Biol. Chem., 275: 4708: 4712">[2]</a></td>
   </tr><tr>
   </tr><tr>
-
     <td>I<sub>0</sub></td><td>1000</td><td>n mol/L</td><td>initial concentration of <i>Luminesensor</i> in ground state</td><td></td>
+
     <td>I<sub>0</sub></td><td>1000</td><td>AU</td><td>initial concentration of <i>Luminesensor</i> in ground state</td><td></td>
   </tr><tr>
   </tr><tr>
-
     <td>k</td><td>0</td><td>n mol/L</td><td>initial concentration of <i>Luminesensor</i> in active state</td><td></td>
+
     <td>k</td><td>500</td><td>10<sub>-6</sub>M</td><td>initial concentration of <i>Luminesensor</i> in active state</td><td></td>
   </tr><tr>
   </tr><tr>
-
     <td>K</td><td>0</td><td>n mol/L</td><td>initial concentration of dimered <i>Luminesensor</i></td><td></td>
+
     <td>K</td><td>10000</td><td>AU</td><td>initial concentration of dimered <i>Luminesensor</i></td><td></td>
   </tr>
   </tr>
   </table>
   </table>
Line 104: Line 104:
  <p></p>
  <p></p>
  <ul class="refer"><li id="ref1">
  <ul class="refer"><li id="ref1">
-
1. Zoltowski, B.D., Crane, B.R.(2008). Light Activation of the LOV Protein Vivid Generates a Rapidly Exchanging Dimer. <i>Biochemistry</i>, 47: 7012: 7019
+
1. Subhayu Basu et al.(2005), A synthetic multicellular system for programmed pattern formation. <i>Nature</i>, vol.434: 1130: 1134
-
  </li><li id = "ref2">
+
-
2. Mohana-Borges, R., Pacheco, A.B., Sousa, F.J., Foguel, D., Almeida, D.F., and Silva, J.L. (2000). LexA repressor forms stable dimers in solution. The role of specific DNA in tightening protein-protein interactions. <i>J. Biol. Chem.</i>, 275: 4708: 4712
+
-
  </li><li id = "ref3">
+
-
3. Zoltowski, B.D., Vaccaro, B., and Crane, B.R. (2009). Mechanism-based tuning of a LOV domain photoreceptor. <i>Nat. Chem. Biol.</i> 5: 827: 834
+
  </li></ul>
  </li></ul>
</div>
</div>
</html>{{Template:Peking2012_Color_Epilogue}}
</html>{{Template:Peking2012_Color_Epilogue}}

Revision as of 03:46, 24 October 2012

ODE Model

According to the previous circuit and ODE model, we listed all the differential equations and simulated this system with MATLAB with equations listed as below:

Formulae


Formulae

And parameters as

ParameterValueUnitDescriptionSource
aG210-6M/minvivid decay rate constant
aC210-6M/minvivid dissociation rate constant[3]
aL1110-6M/minmonomer LexA releasing rate constant from specific binding site
aL2110-6M/minbinded monomer LexA dissociation rate constant
bC8.x10-310-6Mdimered LexA releasing rate constant from specific binding site
bL8.x10-110-6Mequilibrium excitation constant on dark
bR1.x10-210-6Mequilibrium excitation constant on light
rG6.92x10-2min-1vivid association equilibrium constant[1]
rC6.92x10-2min-1monomer LexA binding equilibrium constant with specific binding site[2]
rL2.31x10-2min-1binded monomer LexA association equilibrium constantThermal Principle
rR2.31x10-2min-1dimered LexA binding equilibrium constant[2]
I01000AUinitial concentration of Luminesensor in ground state
k50010-6Minitial concentration of Luminesensor in active state
K10000AUinitial concentration of dimered Luminesensor

The simulation result is shown below:

Simulation Result

Figure 1. ODE Simulation in a plate of the ring-like pattern formation.

Simulation Result

Figure 2. ODE Simulation for the radial expression amplitude of the ring-like pattern formation.

From the Figure 1 above, we discovered that the activation and decay of Luminesensor are the key points of progress, and the activating rate is the most sensitive to light intensity. The promoter will be repressed even though the Luminesensor does not totally dimerized.

Parameter Analysis

After modeling the prototype Luminesensor, we attempted to optimize it in a rational way. We have tuned the parameters both up and down, one by one, and finally discovered four parameters which predominantly influence the performance of the Luminesensor.

Function Parameter Description Remark
Reduce responsing time k1Vivid lighting decay rate constantMainly on process from Light to Dark
k3rate constant of monomer LexA releasing from specific binding site
Enhance contrast K2Vivid association equilibrium constantMore dimerization provides more binding opportunity
K5dimered LexA binding equilibrium constantMore binding affinity

Reference

  • 1. Subhayu Basu et al.(2005), A synthetic multicellular system for programmed pattern formation. Nature, vol.434: 1130: 1134
  • Totop Totop