Team:TU Munich/Modeling/Yeast Growth
From 2012.igem.org
(Difference between revisions)
(→Code) |
(→Code) |
||
Line 7: | Line 7: | ||
<pre> | <pre> | ||
data1=[1,1.3625,2.875,5.25]; | data1=[1,1.3625,2.875,5.25]; | ||
+ | |||
t=[0,80,270,450]; | t=[0,80,270,450]; | ||
- | fun = @(k,data) sum((exp(k*t)-data).^2); | + | fun = @(k,data) sum(((exp(k(1)*t)-data)/k(2)).^2); |
- | [k, RN] = fminsearch(@(k) fun(k | + | [k, RN] = fminsearch(@(k) fun(k,data1) - length(t)*log(1/(sqrt(2*pi*k(2)))),[0.005 1]); |
- | |||
kc=0.01; | kc=0.01; | ||
acc=0; | acc=0; | ||
Line 36: | Line 36: | ||
sample(s,:) = kcur; | sample(s,:) = kcur; | ||
% calculate the a-posteriori probability of the new sample | % calculate the a-posteriori probability of the new sample | ||
- | prob(s) = -fun(kcur | + | prob(s) = -fun([kcur k(2)],data1); |
if s>1 | if s>1 | ||
% check whether we reject the sample or not. mind that the | % check whether we reject the sample or not. mind that the | ||
Line 48: | Line 48: | ||
lh(s)=acc/(nacc+acc)*100; | lh(s)=acc/(nacc+acc)*100; | ||
s=s+1; | s=s+1; | ||
- | |||
else | else | ||
% count not accepted samples | % count not accepted samples | ||
Line 58: | Line 57: | ||
kprev = kcur; | kprev = kcur; | ||
acc=acc+1; | acc=acc+1; | ||
+ | %waitbar((k-1)/n) | ||
lh(s)=acc/(nacc+acc)*100; | lh(s)=acc/(nacc+acc)*100; | ||
s=s+1; | s=s+1; | ||
Line 64: | Line 64: | ||
end | end | ||
end | end | ||
- | |||
catch ME | catch ME | ||
disp(ME) | disp(ME) |
Revision as of 14:01, 21 October 2012
Yeast Growth Model
Code
data1=[1,1.3625,2.875,5.25]; t=[0,80,270,450]; fun = @(k,data) sum(((exp(k(1)*t)-data)/k(2)).^2); [k, RN] = fminsearch(@(k) fun(k,data1) - length(t)*log(1/(sqrt(2*pi*k(2)))),[0.005 1]); kc=0.01; acc=0; nacc=0; n=10000; sample=zeros(n,1); prob=zeros(n,1); lh=zeros(n,1); accepted=zeros(n,1); kprev = k(1); s=1; while (s<n+1) if(mod(s,500)==0) (s)/n; display(['Acceptance Rate: ' num2str(acc/(nacc+acc)*100) '%']) end try % the step is sampled from a multivariate normal distribution and % scaled with kc kcur = kprev + kc*mvnrnd(0,0.001); sample(s,:) = kcur; % calculate the a-posteriori probability of the new sample prob(s) = -fun([kcur k(2)],data1); if s>1 % check whether we reject the sample or not. mind that the % probability is log-scaled if log(rand(1)) < +prob(s)-prob(s-1) % update current sample kprev = kcur; % count accepted samples acc=acc+1; % save current acceptance rate for post-processing lh(s)=acc/(nacc+acc)*100; s=s+1; else % count not accepted samples nacc=nacc+1; end else % we need to do something else for the first sample. if log(rand(1)) < prob(s)+RN kprev = kcur; acc=acc+1; %waitbar((k-1)/n) lh(s)=acc/(nacc+acc)*100; s=s+1; else nacc=nacc+1; end end catch ME disp(ME) end end disp(['Doubling Time: ' num2str(log(2)/k(1)) ' STD: ' num2str(std(log(2)./sample))])